
Tools and Methods for Distributed and
Large-Scale Training of Deep Neural

Networks

Doctoral Thesis in Information and Communication
Technology

Specialization in Software and Computer Systems

Sina Sheikholeslami

Doctoral dissertation, which, with the permission of the KTH Royal Institute of
Technology, is submitted for public defense for the Degree of Doctor of Philosophy
on Thursday, the 27th of March 2025, at 09:00 in Sal-A, Electrum, Kistagången
16, Stockholm.

Principal Supervisor:
Professor Vladimir Vlassov, KTH Royal Institute of Technology

Co-supervisors:
Associate Professor Amir H. Payberah, KTH Royal Institute of Technology
Dr. Jim Dowling, Hopsworks AB

Advance Reviewer and Substitute Grading Committee Member:
Associate Professor Hossein Azizpour, KTH Royal Institute of Technology

Opponent:
Associate Professor Salman Toor, Uppsala University.

Grading Committee:
Professor Keijo Heljanko, University of Helsinki
Associate Professor Marina Papatriantafilou, Chalmers University of Technology
Associate Professor Monowar Bhuyan, Umeå University

© Sina Sheikholeslami, 2025

TRITA-EECS-AVL-2025:28
ISBN 978-91-8106-214-4

This doctoral dissertation has been prepared using LATEX.
Printed by Universitetsservice US-AB,
Stockholm, Sweden 2025

Abstract
Deep Neural Networks (DNNs) have been at the forefront of recent break-
throughs in Machine Learning (ML) and Deep Learning (DL). DNNs are
increasingly used in various tasks, from Earth observation and analysis of
satellite images to medical diagnosis and smart chatbots. A major contribu-
tor to these advances has been the abundance of training data, computation
resources, and frameworks that enable efficient training of ever-larger and
more complex DNNs, within a paradigm referred to as distributed DL, and
in particular, distributed training, which is the focus of this doctoral disser-
tation. In distributed training, the data and computation are distributed
across several workers as opposed to single-host training in which both the
data and computation reside and happen on a single worker. In this set-
ting, distributed training can help overcome the limitations of single-host
training, such as memory constraints, computational bottlenecks, and data
availability.

However, distributed training comes with a number of challenges that
need to be carefully addressed in order to have a system that efficiently
makes use of it. These challenges include, but are not limited to, effi-
cient distribution of computation and data across the workers, the pres-
ence of straggler workers in a cluster (workers that get significantly behind
in their computation step compared to the other workers), especially in
synchronous execution settings, and communication and synchronization
among the workers. This implies that the system should provide scalability
in both the computation and the data dimensions.

On the other hand, from a programming and usability point of view,
using the distributed training paradigm typically requires knowledge of dis-
tributed computing principles and experience with distributed and data-
intensive computing frameworks as well as applying major changes to the
code used for single-host training. Furthermore, as training a DNN involves
several steps and stages (e.g., data preparation, hyperparameter tuning,
model training, etc.), it would be desirable to possibly reuse the computa-
tional results of different steps in each other (e.g., reusing weights learned
during hyperparameter tuning trials, for weight initialization of the model
training step) in order to improve training time. Finally, when developing
larger and more complex DNNs, we also need to know about each design
choice’s contributions.

The contributions of this doctoral dissertation address the aforemen-
tioned challenges, and collectively optimize large-scale DNN training, mak-
ing it more accessible, efficient, and computationally sustainable while re-
ducing the redundancy in ML/DL workflows, and providing usable tools for
conducting ablation studies.

i

Keywords
Distributed Deep Learning, Ablation Studies, Data-parallel Training, Deep
Neural Networks, Systems for Machine Learning, Weight Initialization,
Hyperparameter Optimization

ii

Sammanfattning
Deepa neurala nätverk (DNNs) har varit i framkant av de senaste genom-
brotten inom maskininlärning (ML) och djupinlärning (DL). DNN används
i allt större utsträckning inom en rad olika områden, från jordobservation
och analys av satellitbilder till medicinsk diagnostik och smarta chattbotar.
En stor bidragande faktor till dessa framsteg är tillgången på stora mängder
träningsdata, kraftfulla beräkningsresurser och ramverk som möjliggör ef-
fektiv träning av allt större och mer komplexa DNNs inom ett paradigm som
kallas distribuerad DL. Inom detta område är distribuerad träning fokus
för denna doctoral dissertation. I distribuerad träning fördelas data och
beräkningar över flera arbetarnoder, till skillnad från träning på en enskild
värd där både data och beräkningar hanteras av en enda nod. I denna kon-
text kan distribuerad träning bidra till att övervinna begränsningar såsom
minnesbegränsningar, beräkningsflaskhalsar och begränsad datatillgång.

Distribuerad träning innebär dock flera utmaningar som måste hanteras
noggrant för att säkerställa effektiv resursanvändning. Dessa utmaningar
inkluderar, men är inte begränsade till, effektiv fördelning av beräkningar
och data mellan noder, förekomsten av stragglers (arbetarnoder som ham-
nar efter i sina beräkningar jämfört med andra), särskilt i synkrona ex-
ekveringsmiljöer, samt kommunikation och synkronisering mellan noderna.
För att systemet ska vara skalbart behöver det kunna hantera både ökande
beräkningsbehov och större datamängder.

Ur ett programmerings- och användbarhetsperspektiv kräver distribuerad
träning ofta djupgående kunskap om distribuerad beräkning och erfarenhet
av dataintensiva ramverk. Dessutom innebär det ofta omfattande anpass-
ningar av kod som används för träning på en enskild värd. Eftersom träning
av en DNN innefattar flera steg och faser (t.ex. datapreparering, hyper-
parametertuning, modellträning etc.), vore det önskvärt att återanvända
beräkningsresultat från olika steg (t.ex. vikter inlärda under hyperparam-
etertuning för att initialisera modellträningen) för att förbättra träningsef-
fektiviteten. Slutligen, vid utveckling av större och mer komplexa DNNs,
är det också viktigt att förstå varje designvals inverkan.

Denna doctoral dissertation adresserar de ovan nämnda utmaningarna
och optimerar storskalig DNN-träning genom att göra den mer tillgäng-
lig, effektiv och beräkningsmässigt hållbar, samtidigt som redundansen i
ML/DL-arbetsflöden minskas och användbara verktyg för ablationsstudier
tillhandahålls.

Nyckelord
Distribuerad djupinlärning, Ablationsstudier, Dataparallell träning, Djupa

iii

neurala nätverk, System för maskininlärning, Viktinitialisering,
Hyperparameteroptimering

iv

Preface
I started my doctoral studies in September 2019. Back then, DNNs had
already proved to be a game changer for many applications, but the past
couple of years have seen a totally different interest in - and public awareness
of - the potential that Artificial Intelligence (AI), and in particular ML and
DL can unlock1. This is largely thanks to the public release of ChatGPT
in late 2022, which is only one of the many tools based on many different
DNN architectures (but it is probably the best-known AI tool out there
at the time of writing this doctoral dissertation). Nevertheless, the focus
of this doctoral dissertation has been to investigate how we can come up
with better tools, methods, and frameworks for training ever-larger DNNs
(as one of the most widely used types of ML/DL models) in a way that is
faster, more resource-efficient, and ideally leads to improved models.

Now, back in 2019, there were already a lot of challenges when it came
to training DNNs at scale - which meant, training big DNNs on big datasets
on big clusters of computers (a.k.a. workers, which typically have one or
more Graphics Processing Units (GPUs) as their computation workhorses).
Large-scale training naturally required using multiple computers, or clus-
ters of computers, in a distributed manner. However, many practitioners
and researchers were not that well-versed in distributed systems principles
or distributed computing tools. Moreover, the model training step is just
one of many in a typical model training pipeline. As a result, the codebase
for an ML/DL training pipeline includes specific code for each step, further
contributing to code redundancy and maintenance challenges. We looked
at two particular steps, hyperparameter tuning and ablation study, since
they are both embarrassingly parallel tasks and typically share a significant
amount of code with each other and the model training step.

When we want to train a DNN from scratch (which means, we have a
model that has not been trained on any datasets), we should select, or in
most cases, search for, suitable hyperparameter values, in a step known as
hyperparameter tuning/optimization (which is also the main application of
Maggy). Hyperparameters are configuration values that the model cannot
learn on its own, and we need to set them to be able to start the training
process. You can think of them as knobs and settings of the training pro-
cess. Examples of hyperparameters are the learning rate (specifying how
much the model is changed after each step of training), the number of layers
in a DNN, and batch size, which refers to the number of dataset examples

1ML, DL, and in general AI had already been regarded as hype in the preceding years,
but the release of ChatGPT made AI the talk of the town.

v

in each mini-batch of data that is used for training. Each hyperparameter
tuning trial typically involves training the same (or a very similar model, if
the model architecture is also a hyperparameter), on a subset of the data
that will be used for the full model training. The configuration with the best
performance (e.g., in terms of classification accuracy) will be selected and
its hyperparameter values will be used for initializing the model training
step. As you can imagine, the code for the hyperparameter tuning step will
turn out to be very similar to the model training code, and many popular
hyperparameter tuning techniques are embarrassingly parallel.

Once a model has been trained, we would naturally be interested to un-
derstand why it performs the way it does. Ablation studies are a simple yet
powerful approach for answering such questions. The idea is simple: you
systematically remove or modify certain components, re-train the model,
and observe how it behaves. Ablation studies can be performed on any
component of an ML system, e.g., layers of a DNN, specific features of
the training dataset, or parts of the training pipeline configuration. De-
spite their simplicity and usefulness, ablation studies can be tedious and
resource-intensive. Running them often requires multiple versions of the
code (which, are also very similar to the model training code), re-training
models with different configurations, and analyzing the results, all of which
can introduce redundancy and maintenance overheads. Fortunately, abla-
tion studies are also embarrassingly parallel, meaning multiple experiments
can be run independently.

Observing these challenges led us to come up with our first contribution,
distribution oblivious training functions [1]. This basically meant that the
practitioners and researchers could refactor the code that they were used
to write daily (usually in Jupyter Notebooks), and make it ready to be
run on a cluster of computers - i.e., in a distributed manner. To show-
case the potential of this approach, we developed and released an open-
source Python framework for asynchronous and parallel hyperparameter
tuning, called Maggy [2], and then the first dedicated framework for au-
tomated parallel ablation studies in DL, called AutoAblation, built on
top of Maggy. We published the AutoAblation paper in EuroMLSys
2021 [3], in which we also proposed a formal definition of ablation studies
in the context of ML and DL.

After that, in 2022, we identified a possible source of gains in one of the
standard practices of distributed training of DNNs, known as Data-parallel
Training (DPT). By then, it was already well-known that the different ex-
amples in a training dataset (think different images in a dataset of images)

vi

are not equal in terms of their difficulty or importance for the model that
would be trained on them, e.g., to learn how to correctly classify unseen
images after being trained on a training dataset of images. The model usu-
ally finds some of the training images (examples) harder to learn, and some
of them easier. We saw an opportunity to use example importance to re-
place the standard way the dataset examples were being partitioned across
the different workers, which was at random: we came up with a couple of
dataset partitioning heuristics and showed that maintaining the example
importance across the workers, instead of randomly assigning the exam-
ples to the workers during training, can lead to better models and faster
accuracy milestones - and on top of that, it can substantially reduce the
Input/Output (I/O) and network overhead of the cluster used for model
training. This resulted in our importance-aware DPT paper [4], which also
won the Best Artifact Award at DAIS 2023.

Later, in 2023, I personally became interested in the idea of reusing the
computations and results of different DL pipelines in each other. While
working on an idea to exploit computation reuse for the generation and
scheduling of ablation study experiments, we came up with a simple yet ef-
fective weight initialization approach for model training, which reuses what
the model has learned during the hyperparameter tuning step that happens
prior to the model training step, in order to initialize the model weights for
the training step. Let me elaborate on this.

So, typically, during hyperparameter tuning, in each trial, we partially
train a model on a subset of the training dataset. Then, once we find suit-
able hyperparameter values (and our winning hyperparameter trial), in the
model training step we fully train the same model from the winning trial,
this time on the full training dataset. Why not reuse what the model has
already learned during the winning hyperparameter tuning trial? after all,
we have to initialize the model weights once again to start the full training
process. Would this head-start make the model more vulnerable to pitfalls
such as falling into local minima2? or could it lead to a reduction in training
time, or maybe an even better-trained model? to answer these questions, we
performed an experimental evaluation on a number of benchmark models
and datasets used for image classification. Our results show that for many
of these combinations, we can expect training speedup while maintaining or
even improving the model performance [5].

2In learning based on Stochastic Gradient Descent, the model is basically trying to
navigate its way around a loss landscape that can be considered as mountainous terrain,
and the goal is to descend to the lowest possible valley (the global minimum of the
loss function). However, along the way, the model may get stuck in smaller dips (local
minima) that are not the absolute lowest point.

vii

It was now the summer of 2024, and Large Language Models (LLMs)
were all the rage, so I also started to think about possible applications of
LLMs in my research work. It then occurred to me that back then, when we
were developing AutoAblation, I used to wish there would be an easier
and more generalized way to automate model and dataset manipulation (we
had to manually add support for each new component and each underlying
DL framework that we wanted to use with AutoAblation). Thankfully,
LLMs, by this point had become increasingly good and much more reliable
at generation and modification of ML/DL code, and ablation studies could
be a very fit use-case for them. So, we developed a tool called Ablation-
Mage, which generates the corresponding ablation study artifacts using
natural language hints provided by the users in their code [6].

Now, this was a quick overview of my research work and the journey in
which my colleagues and I made a bunch of contributions to the field. If
you are interested in a more formal and detailed discussion of my research
during my doctoral studies, I invite you to read the rest of this doctoral
dissertation.

viii

Acknowledgements
In yours truly’s humble opinion, acknowledgements are by far the best part
of any doctoral dissertation. I may have never read a doctoral thesis in
full (except my own!), but I can assure you that I have read hundreds and
hundreds of acknowledgment sections. It’s the only part of the thesis that
is solely about the student and those around them, and I’m always up for
some good stories!

The thesis you are about to read is the culmination of the last five and
a half years of my life in terms of research. I always tried to make my
best effort to maintain what I consider academic and scholarly integrity
and reproducible science, and to avoid making any conclusions that are not
supported by evidence. That’s why you’ll see lots of box plots and repeated
experiments in my papers, as well as all the publicly available code and
experiment results.

But I could never have done this on my own. Doing a Ph.D. is not
easy unless you are a genius, and it takes its toll also on the people around
you: your supervisors, your colleagues, your friends and support groups,
and your family. I tried not to forget this, but I’m sure I’ve let out more
steam than I should have on the people around me - and yet you stuck with
me to the very end.

To my main supervisor, Vlad: thank you for the undoubted trust you
put in me even before I formally started my Ph.D. under your supervision,
for teaching me how to do proper academic research, for your patience with
my missed deadlines, and for your words of encouragement when I needed
them most. Throughout the years, as is customary between any student and
their supervisors, we’ve had many arguments and disagreements, but never
once did I doubt for a single moment that you are a kind, caring academic
father. And, of course, I will never forget October 2022, when I was on the
verge of a nervous breakdown (something I never imagined could happen
to me in a million years) from all the horrible news coming from Iran. You
helped me get myself back together as a person. I want you to know that
you were among a very rare group of supervisors who did such a thing for
their students, and for this and so many other things, I am grateful to you.

To Amir: back in 2014, I was a last-year bachelor student, fascinated
with everything computers but lacking the ability to focus on a single sub-
ject, who could not decide what he’d like to work on. One of the luckiest
things that has happened to me is that you decided to come back to Tehran
Polytechnic, and I was fortunate to be your student and TA and do my
undergrad thesis under your supervision. Eleven years later, you have been
not only my co-supervisor and mentor but also my brother with a heart of
gold. All these years, I never once doubted that I could rely on you. Amir,

ix

I hope I have finally been a good student (not missing this final deadline!).
Nevertheless, I’m proud to have been your student, and your friend. You
told us about what Christian said to you: “Always be kind to the students.”
I don’t think anyone can argue against the fact that you have always been
kind to us. Thank you!

To Jim: you put your trust in me in 2018 and gave me the opportunity to
work with you at Hopsworks on my M.Sc. thesis. And then I became your
Ph.D. student. Throughout these years, any 15-30 minute meeting with
you would set the course of my work for the subsequent months. Many of
the ideas in my papers were initiated in one of our one-on-one discussions.
Thank you for everything.

I would also like to express my gratitude to all those involved in the
process of my Ph.D. defense. I am especially thankful to Associate Profes-
sor Salman Toor for accepting the role of my thesis opponent, and I look
forward to our discussion. I am also deeply grateful to the members of my
grading committee: Professor Keijo Heljanko, Associate Professor Marina
Papatriantafilou, and Associate Professor Monowar Bhuyan, for their time
and effort in evaluating my work. Special thanks go to Associate Professor
Hossein Azizpour for his advance review of my thesis and his detailed feed-
back. Lastly, I’m grateful to Professor Sarunas Girdzijauskas for taking the
time to serve as the Chair of my defense session.

Now, to those who have had the greatest impact on my life over these
years.

Zahra, thank you for your unconditional love and support. Hearing
words of encouragement from a “proper” doctor has always been helpful to
me. Thank you for your pure kindness, for effortlessly bringing smiles to
my face, for putting up with my messed-up sleep schedule, and for being
my bestest friend.

Sara, thank you for being the kind and amazing person that you are.
You have always been there for me since I moved to Stockholm in 2018
and have made everything so much easier than it could have been. I look
forward to many more gossip sessions, many more trips and get-togethers,
and who knows, maybe a research collaboration.

Avenia, thank you for always believing in me, always making sure that
I’m doing okay with my life, putting up with my jokes, and being “Avenia
kind”. I look forward to more weekend brunches, and deep discussions about
the meaning of life, the universe, and everything (together with Sara).

Samie, thank you for being a brother, best friend, and partner-in-crime
for me and, again, for putting up with my jokes. I’m looking forward to get-
ting certified in yet another means of transportation alongside you. Parmiss,
among other things, thank you for always looking out for me, for being a
beacon of reliability in our adventures, and for always organizing amazing

x

trips.
Tianze, what a journey it has been! We became classmates back in

Eindhoven in 2017, and we ended up working in the same office as Ph.D.
students. I have rarely met someone who is as smart and knowledgeable,
and yet as humble as you. Thank you for all the daily support, and for your
invaluable contributions to the work included in this thesis.

Hamid, thank you for our many many walks around Lappis Beach, our
daily commutes to and back from Electrum, for all the fruitful discussions
(I’m pretty sure there have been quite a few times in which I’ve gone “Wow
this is what they call a fruitful discussion!”), and for being a great friend.

Mohammad, thank you for being the role model of a scientist that you
are, but most importantly for being an amazing friend. It’s a privilege to
have a friend as thoughtful and caring as you.

Pedram, I have always enjoyed discussing life, the economy, science,
general news, our childhood, and all the gossip, for that matter, with you.
Thank you for all this and for so much more, and for making the effort
and visiting us in Stockholm twice (so far) while we still have not been to
Toulouse.

Shoutout to all my friends, fellow students, and colleagues at SCS and in
Electrum, and in particular Tianze, Susanna, Hamid, Sana, Zainab, David,
Fabian, Francisco, Desta, Amirhossein, Shirin, Sara, Klas, Vangjush, Javier,
Sameen, Vahid, Massimo, Mohammad, Edward, Amir, Paris, Theofilos,
Kim, and Amir Mahmood. Thanks to Moritz Meister for being an amaz-
ing colleague and collaborator, Seif Haridi for his encouragement and kind
advice, and Fredrik Lundevall for all the stories over lunch. Special thanks
to Ahmad Al-Shishtawy, for being the reviewer of my half-time and 80%
seminars.

Thanks to Thomas Sjöland for always supporting us at SCS and all
the lessons and tales on the history of Sweden and KTH. I would also
like to thank our HR officers, Madeleine Printzsköld, Karl Henning, and
Fanny Sjöström, and our doctoral education support staff, Susy Mathew,
Emanuele Borg, and Emmy Axén. I’m also thankful to Joanna Leksell and
Göran Olofsson of EIT Digital for their kindness and help over the years.

Susanna and Saumey, serving with you at the EECS Ph.D. Council
has been the most fun (and perhaps the most impactful) part of my doc-
toral studies. It has been an honor. I’ll never forget the gossip, the “Live-
WhatsApping” of meetings in which one of us was absent, and I’m proud
of what we, together with our selfless and amazing Ph.D. representatives,
were able to achieve.

Daniel, the same appreciation goes to you; it has been a privilege serving
with you on the Chapter Board. Susanna, Saumey, Daniel, Mattias, and
all the past and present members of DrInK, thank you for all the amazing

xi

events at the Chapter Hall, the crowded Pubs, the unforgettable Karaoke
Nights, the Gasques, and for everything you have done for the Ph.D. stu-
dents at KTH.

I want to thank my friends in Stockholm (and around) for all the happy
memories we made together and for their constant support: Ara, Rezvaneh,
Dimi, Parastu, Albin, Amir, Shahab, Romina, Mehdi, Farhad, Shima, Saba,
Niloofar, Aida, Oskar, Andrea, Babak, Neshat, Razieh, Aref, Shamim, and
Louis.

Now, to my friends across the oceans, across the seas... you know how
much you mean to me. Thank you for keeping up with me and my occasional
nagging: Shaghayegh, Sasan, Hamid, Nima, Navid, Sepand, Kurosh, Pe-
gah, Reyhaneh, Motina, Mohammad, Keyvan, Kiana, Ata, Mahdi, Armin,
Farzad, Aida, Mohammad, Mahdi, Sumeet, Dipika, Davor, Hamidreza,
Hoda, and Zahra.

I’m also grateful to my relatives outside of Iran for always checking on
me, visiting me from time to time, and providing support and a place to
stay whenever I needed to get away from Stockholm. Uncle Mostafa, Aunt
Naeimeh, Dayi Siavash, Aunt Shina, Sahar, and Cyrus - thank you! I’m also
grateful to my Aunt Zahra and Aunt Javaher and I cherish the memories of
my beloved Aunt Pira and Bababoo, both of whom I’m sure would be very
happy to know that I have finished my studies.

Now, to the people to whom I owe everything I have in my life and who
have been there for me since day one. Words will surely fall short, so I’ll
keep it concise. Sidi, thank you for being the kindest person I have ever
known and for being the coolest maman I could have wished for. Hadi, my
personal hero and role model, apart from everything else, you know you are
the reason I got interested in academia. Thank you for everything you and
maman have done for me. You two are the reason for everything I have
and everything I will ever have in my life. Being your son is enough to call
myself the luckiest person ever. Dorsa, I could not have asked for a better
sister than you. However stubborn I may seem, I have always looked up
to you, and your love and kindness have always warmed my heart. Thank
you for all you have done for me. Aryan, my “legal brother”, thank you
for your kindness, encouragement, and all the laughs. And to my cousin
Arman, thank you for always being the kind and big brother that you are.

Wow! That was quite a lot of acknowledgements, right? I can’t com-
plain, though; I’ve been surrounded by so many amazing friends. In the end,
I dedicate this doctoral dissertation to all the researchers who practice open
science, reproducible research, and, in particular, my fellow Ph.D. students
who publish their code and experimental data, even though no one asks
them to, and even though it often goes unrecognized. You are awesome. I
love you.

xii

List of Papers

Paper P1
Meister, M., Sheikholeslami, S., Andersson, R., Ormenisan, A. and Dowl-
ing, J.
“Towards Distribution Transparency for Supervised ML with Oblivious Train-
ing Functions”.
Workshop on MLOps Systems, co-located with the Third Conference on
Machine Learning and Systems (MLSys).
March 2020

Paper P2
Meister, M., Sheikholeslami, S., Payberah, A.H., Vlassov, V. and Dowling,
J.
“Maggy: Scalable Asynchronous Parallel Hyperparameter Search”.
Proceedings of the 1st Workshop on Distributed Machine Learning (Dis-
tributedML), co-located with The 16th International Conference on Emerg-
ing Networking Experiments and Technologies (CoNEXT) (pp. 28-33).
December 2020

Paper P3
Sheikholeslami, S., Meister, M., Wang, T., Payberah, A.H., Vlassov, V. and
Dowling, J.
“AutoAblation: Automated Parallel Ablation Studies for Deep Learning”.
Proceedings of the 1st Workshop on Machine Learning and Systems (Eu-
roMLSys), co-located with The 16th European Conference on Computer
Systems (EuroSys) (pp. 55-61).
April 2021

xiii

Paper P4
Sheikholeslami, S., Payberah, A.H., Wang, T., Dowling, J. and Vlassov, V.
“The Impact of Importance-Aware Dataset Partitioning on Data-Parallel
Training of Deep Neural Networks”.
Proceedings of the 23rd IFIP International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS) (pp. 74-89).
� Best Artifact Award
June 2023

Paper P5
Sheikholeslami, Wang, T., A.H., Wang, T., Dowling, J. and Vlassov, V.
“Deep Neural Network Weight Initialization from Hyperparameter Tuning
Trials”.
Proceedings of the 31st International Conference on Neural Information
Processing (ICONIP).
December 2024

Paper P6
Sheikholeslami, S., Ghasemirahni, H., Payberah, A.H., Wang, T., Dowling,
J. and Vlassov, V.
“Utilizing Large Language Models for Ablation Studies in Machine Learning
and Deep Learning”.
Proceedings of the 5th Workshop on Machine Learning and Systems (Eu-
roMLSys), co-located with The 20th European Conference on Computer
Systems (EuroSys).
March 2025

xiv

Acronyms

Acronyms
AI Artificial Intelligence

API Application Programming Interface

DL Deep Learning

DNN Deep Neural Network

DPT Data-parallel Training

GPU Graphics Processing Unit

I/O Input/Output

LLM Large Language Model

ML Machine Learning

xv

Contents

I Thesis Overview 1

1 Introduction 3
1.1 Research Objectives and Challenges 5
1.2 Thesis Contributions . 8
1.3 Research Methodology . 10
1.4 Sustainability and Social Aspects 11
1.5 Publications . 12
1.6 Software . 15
1.7 Dissertation Organization . 16

2 Background and Related Work 17
2.1 Machine Learning Systems . 17
2.2 Machine Learning Pipelines 18
2.3 Hyperparameter Tuning and Optimization 20
2.4 Weight Initialization Techniques 21
2.5 Distributed Model Training 22
2.6 Ablation Studies . 23
2.7 Machine Learning Tools and Frameworks 24

3 Summary of Appended Papers 27

4 Conclusions and Future Work 35
4.1 Dissertation Summary . 35
4.2 Broader Impact . 38
4.3 Future Work . 39

Bibliography 41

II Appended Papers 47

xvii

Part I

Thesis Overview

1

Chapter 1

Introduction

Deep Neural Networks (DNNs) have been at the forefront of recent break-
throughs in Machine Learning (ML) and Deep Learning (DL). DNNs are
increasingly used in various tasks, from Earth observation and analysis of
satellite images to medical diagnosis and smart chatbots. A major contribu-
tor to these advances has been the abundance of training data, computation
resources, and frameworks that enable efficient training of ever-larger and
more complex DNNs, within a paradigm referred to as distributed DL, and
in particular, distributed training which is the focus of this doctoral disser-
tation. In distributed training, the data and computation are distributed
across several workers as opposed to single-host training in which both the
data and computation reside and happen on a single worker. In particular,
in this doctoral dissertation we consider a worker as a computing entity that
trains a DNN in collaboration with other similar entities. In a machine with
one or multiple Graphics Processing Units (GPUs), or in a cluster of several
machines with one or multiple GPUs, we typically consider the process run-
ning on each GPU as a separate worker. In this setting, distributed training
can help overcome the limitations of single-host training, such as memory
constraints, computational bottlenecks, and data availability [7]–[11].

However, distributed training comes with a number of challenges that
need to be carefully addressed in order to have a system that efficiently
makes use of it. These challenges include, but are not limited to, efficient
distribution of computation and data across the workers, the presence of
straggler workers in a cluster (workers that, compared to the other workers
in a cluster, get significantly behind in their computation task), especially
in synchronous execution settings, and communication and synchronization
among the workers. Also, some ML/DL experiments such as hyperparame-
ter tuning and ablation studies consist of trials that have different resource
requirements. This implies that the system should provide scalability in
both the computation and the data dimensions.

3

CHAPTER 1. INTRODUCTION

On the other hand, from a programming point of view, using the dis-
tributed training paradigm typically requires knowledge of distributed com-
puting principles and experience with distributed and data-intensive com-
puting frameworks as well as applying major changes to the code used for
single-host training [12]. Furthermore, as training a DNN involves sev-
eral steps and stages (e.g., data preparation, hyperparameter tuning, model
training, etc.), it would be desirable to possibly reuse the computational
results of different steps in each other (e.g., reusing weights learned during
hyperparameter tuning trials, for weight initialization of the model training
step) in order to improve training time. Finally, when developing larger
and more complex DNNs, new training approaches, or in general, new ML
systems, in order to reason about the different components of the system,
we also need to know about each design choice’s contributions to the per-
formance of the system.

Therefore, we need tools and methods that can (i) efficiently and effec-
tively distribute the training workload and its components (e.g., the dataset,
the model, the computation) across different workers while maintaining the
quality and convergence of the model compared to single-host training, and
(ii) help us inspect the relative impact of different components of an ML
system to its performance.

In this doctoral dissertation, I present my contributions, listed below, in
developing tools and methods for distributed and large-scale ML and DL:
C1. Distribution-oblivious training functions [1], a programming ab-

straction to unify single-host and distributed ML/DL training func-
tions,

C2. MaggyMaggyMaggy [2], an open-source framework for asynchronous, parallel hy-
perparameter tuning that can run ML/DL code on top of Apache Spark
using distribution-oblivious training functions,

C3. AutoAblationAutoAblationAutoAblation [3], the first dedicated framework for automated de-
sign and parallel execution of ablation study experiments in ML and
DL,

C4. Importance-aware Data-parallel Training (DPT) [4], a novel
dataset partitioning approach for DPT of DNNs that considers dataset
example importance, which compared to random partitioning in vanilla
DPT, can reduce model training time and network and Input/Output
(I/O) overhead while maintaining model accuracy,

C5. A novel weight initialization approach for training DNNs that
reuses computation results from the hyperparameter tuning step and
can reduce the training time while maintaining or improving model
accuracy compared to random weight initialization [5], and

4

CHAPTER 1. INTRODUCTION

C6. AblationMageAblationMageAblationMage [6], a tool based on Large Language Models (LLMs)
that further simplifies the conduction of ablation studies.

Also, distribution-oblivious training functions (C1), Maggy (C2) and
AutoAblation (C3) have been integrated into Hopsworks [13], a platform
for ML/DL, as presented in [14]. The Hopsworks platform has been used
in many application domains, e.g., finance, healthcare, recommender sys-
tems, and in particular, for Earth observation [15] in the ExtremeEarth
project [16].

This chapter serves both as an introduction and an overview of this
doctoral dissertation. I will start by describing the main research objectives
and challenges addressed in this doctoral dissertation, and then summarize
our primary contributions. I will then discuss the research methodologies
used for this work, and go over other important aspects of my doctoral
research, in particular, the broader research and sustainability impacts of
my work. I will then list the included publications and related software
artifacts and finally describe the structure of the doctoral dissertation.

1.1 Research Objectives and Challenges
The primary focus of the research work included in this doctoral disser-

tation is to develop, enhance and improve tools and methods for training
DNNs at scale, addressing challenges and obstacles related to efficient dis-
tributed training, scalability of ML/DL workflows and experiments, reusabil-
ity of computation in ML/DL pipelines, and automation of ablation studies.
To this end, we pursue the following research objectives.

O1. Develop Tools and Frameworks for Scalable, Distributed DNN
Training Experiments.
The training stage of DNNs includes several steps such as hyperpa-
rameter tuning, ablation studies, and the actual model training. A
particular challenge here is the effect of straggler workers on the over-
all wall-clock time of experiments [17], especially when the underly-
ing computation follows execution models similar to bulk synchronous
parallel [18], [19]. Another challenge, from a usability perspective, is
that the current distributed training techniques often require signif-
icant code refactoring, making it difficult for practitioners to transi-
tion from single-host training. A similar usability challenge also exists
when it comes to moving between different steps of ML/DL workflows;
e.g., moving from hyperparameter tuning to model training or ablation
studies results in redundancy and duplication of the codebase. Hence,
tools and frameworks should provide usable programming abstractions

5

CHAPTER 1. INTRODUCTION

that make it easier for developers to write distributed training code,
transform their single-host code to distributed code, or move between
different steps of an experiment with minimal effort.
Challenges to be Addressed. The key challenges in scalable dis-
tributed DNN training experiments addressed by this objective are: (i)
Straggler Mitigation – minimizing the impact of slow or delayed work-
ers to improve overall training efficiency in distributed settings, and
(ii) Usability and Abstraction – designing intuitive programming ab-
stractions that simplify the transition from single-host to distributed
training, reducing developer effort and complexity.
Approach and Contributions. To address the above challenges,
this objective refers to developing tools and frameworks that can en-
able experiments related to training large DNNs over large datasets
efficiently in a distributed manner, i.e., can run large-scale ML/DL ex-
periments across multiple workers, while improving the usability for
developers and practitioners by reducing the redundancy and complex-
ity of the codebase. As part of our contributions, we design and de-
velop tools and frameworks that address these issues. These include
distribution-oblivious training functions, a programming abstraction
to unify single-host and distributed ML/DL training functions (C1),
Maggy, a framework for asynchronous parallel hyperparameter tun-
ing (C2), and AutoAblation, a framework enabling automated par-
allel ablation study experiments for ML/DL (C3). These contributions
(C1-C3) were also integrated into the Hopsworks platform [14].
Related publications included in the doctoral dissertation:

P1. “Towards Distribution Transparency for Supervised ML with Obliv-
ious Training Functions” [1] (2020)

P2. “Maggy: Scalable Asynchronous Parallel Hyperparameter Search” [2]
(2020)

P3. “AutoAblation: Automated Parallel Ablation Studies for Deep
Learning” [3] (2021)

O2. Enhance the Efficiency of Existing DNN Training Techniques.
Distributed training is an already well-established paradigm and con-
sists of several techniques and approaches used by researchers and prac-
titioners on a daily basis [8], [9]. However, the standard techniques may
not be optimized, particularly with respect to computation efficiency
and reuse. Hence, improving these techniques in order to make them
more efficient for large-scale workloads can have a significant impact on
the amount of time and compute resources used for DL experiments.

6

CHAPTER 1. INTRODUCTION

Challenges to be Addressed. We focus on two key challenges:
(i) Inefficiencies in Distributed Training, and (ii) Limited Computa-
tion Reuse Across Pipeline Steps. The former challenge refers to the
fact that standard distributed training techniques may not be fully op-
timized in terms of computation, network usage, and I/O efficiency,
leading to unnecessary overhead and prolonged training times. The
latter challenge states that existing training approaches do not effec-
tively reuse computations from prior steps, such as hyperparameter
tuning, which could otherwise accelerate training and improve model
performance.
Approach and Contributions. To address the aforementioned chal-
lenges, the contributions of this doctoral dissertation (i) improve the
dataset partitioning for DPT, a popular distributed training technique,
in order to reduce the training time as well as network and I/O overhead
(C4), and (ii) introduce a novel weight initialization for DNN training
that reuses computations from the hyperparameter tuning step, which
can lead to speed-ups in training, and potentially better performing
DNNs (C5).
Related publications included in the doctoral dissertation:

P4. “The Impact of Importance-Aware Dataset Partitioning on Data-
Parallel Training of Deep Neural Networks” [4] (2023)

P5. “Deep Neural Network Weight Initialization from Hyperparameter
Tuning Trials” [5] (2024)

O3. Improve the state of Ablation Studies in ML and DL.
Ablation studies, in which different components of an ML system (e.g.,
dataset features or model layers) are removed in order to understand
their individual effects on the overall performance of the system, are an
arguably necessary but often overlooked part of ML/DL research prac-
tice [3], [20]–[22]. This status is largely due to the fact that the typical
practices for performing ablation studies incur additional costs (both
in time and computing) and manual effort, as they require perform-
ing extra experiments and maintaining multiple versions of the code
needed for defining and training the different system configurations.
So, it would be desired to both make it easier for practitioners and
researchers to conduct ablation studies and, at the same time, reduce
the costs associated with them.
Challenges to be Addressed. The key challenges in improving abla-
tion studies in ML and DL are the following: (i) High Implementation
Overhead – conducting ablation studies requires significant manual ef-
fort, including maintaining multiple code versions for different ablation

7

CHAPTER 1. INTRODUCTION

trials, and (ii) Computational and Time Constraints – ablation experi-
ments are resource-intensive, demanding additional time and computa-
tional power, leading many researchers to forgo them in their research
projects. At the same time, the specific challenges discussed in relation
to O1 (i.e., Straggler Mitigation and Usability and Abstraction) apply
to this area as well. Any parallelization of ablation trials should account
for stragglers and uneven resource requirements between trials, since
model training with different model, dataset, or system configurations
requires different amounts of time and computation. Moreover, there
is a shortage of dedicated frameworks for ablation studies in ML/DL
research that can provide abstractions to avoid redundant code main-
tenance.

Approach and Contributions. To address the aforementioned chal-
lenges and fulfill this objective, we provide two related contributions:
AutoAblation, the first dedicated framework for ablation studies in
ML/DL, which enables automated parallel ablation study experiments
(C3), and AblationMage, a tool that utilizes LLMs for automation
of ablation study experiments (C6).

Related publications included in the doctoral dissertation:

P3. “AutoAblation: Automated Parallel Ablation Studies for Deep
Learning” [3] (2021)

P6. “Utilizing Large Language Models for Ablation Studies in Machine
Learning and Deep Learning” [6] (2025)

1.2 Thesis Contributions
Overall, the contributions of this thesis advance the field of distributed DL
with a number of integrated tools and methods designed to improve the
efficiency, scalability, and usability of distributed ML/DL workflows.

Our first contribution, distribution-oblivious training functions
(C1) [1], is an abstraction for ML/DL training code that enables reusing
the same code in both single-host and distributed execution settings. We
then use this abstraction as the foundation for the programming model of
MaggyMaggyMaggy (C2) [2] and AutoAblationAutoAblationAutoAblation (C3) [3]. The former is an open-
source framework for asynchronous, parallel hyperparameter tuning that
can run arbitrary Python code on top of Apache Spark and increases the re-
source utilization of GPU clusters since its asynchronous execution provides
straggler-tolerance, and the latter extends Maggy with support for auto-
mated parallel ablation studies. Distribution-oblivious training functions

8

CHAPTER 1. INTRODUCTION

Overview of Thesis Contributions

Tools and Frameworks for Scalable,
Distributed DNN Training Experiments (O1)

Enhancing the Efficiency of Existing DNN
Training Techniques (O2)

Improving the state of Ablation Studies in
ML/DL (O3)

Distribution-oblivious Training
Functions

MAGGY

AUTOABLATION

ABLATIONMAGE

AUTOABLATION

Tool

Method

C3

C2

C1

C3

C6

Importance-aware
 Data-parallel TrainingC4

Weight Initialization from
Hyperparameter Tuning Trials

C5

Figure 1.1: Categorization of thesis contributions as tools or methods.

(C1), Maggy (C2) and AutoAblation (C3) have also been integrated in
the Hopsworks platform for ML/DL [14].

Our fourth contribution, importance-aware data-parallel training
(C4) [4], is a novel approach for partitioning dataset examples across the
workers in a DPT setting, which considers the importance of dataset ex-
amples rather than simple random partitioning. This approach can lead to
both speed-up and better best test accuracy of the trained models, as well
as a significant reduction in the network and I/O overhead of the cluster.

We then investigate the idea of reusing the computation results of one
DL stage or step into another one. In particular, we propose a simple yet
effective weight initialization method for training DNNs that reuses the
weights learned during the hyperparameter tuning trials (C5) [5]. Through
a number of experiments on benchmark image classification models and
datasets, we show that this weight initialization method can lead to speed
up in the training stage, while maintaining or even improving the best test
accuracy of the trained models, compared to when random initialization is
used.

Finally, witnessing the rise in the capability of LLMs, particularly in
generating ML/DL code, we utilize them in creating another tool for au-
tomation of ablation studies called AblationMageAblationMageAblationMage (C6) [6] .

To summarize, the contributions of this doctoral dissertation collec-
tively optimize large-scale DNN training, making it more accessible, ef-
ficient, and computationally sustainable while reducing the redundancy in

9

CHAPTER 1. INTRODUCTION

ML/DL workflows, and providing usable tools for conducting ablation stud-
ies. Figure 1.1 and Table 1.1 provide the summary and categorization of
these contributions. As a reminder, the research objectives pursued in this
doctoral dissertation are O1: develop tools and frameworks for scalable, dis-
tributed DNN training experiments, O2: enhance the efficiency of existing
DNN training techniques, and O3: improve the state of ablation studies in
ML and DL.

Table 1.1: Summary and categorization of the contributions

Contribution Type Objective Main Idea
Distribution-

oblivious Training
Functions (C1) [1]

Method O1
A programming abstraction to

unify single-host and distributed
ML/DL training functions

Maggy (C2) [2] Tool O1 A framework for asynchronous,
parallel hyperparameter tuning

AutoAblation
(C3) [3] Tool O1, O3

A framework for automated
parallel ablation study

experiments
Importance-aware

Data-parallel
Training (C4) [4]

Method O2
Replacing random dataset
partitioning with example

importance-aware heuristics
Weight

Initialization from
Hyperparameter

Tuning Trials
(C5) [5]

Method O2

Replacing random initialization
of DNNs with weights learned
during hyperparameter tuning

trials

AblationMage
(C6) [6] Tool O3 Utilizing LLMs for conducting

ablation studies

1.3 Research Methodology
The research carried out for this doctoral dissertation spans both (i) de-
signing and implementing new tools and frameworks for ML workflows, as
well as (ii) improving existing tools, methods, and algorithms. Hence, we
employ principles from design science research [23] paired with experimental
validation. For each contribution of this doctoral dissertation, we started
by identifying specific gaps in existing workflows, tools, and methods (e.g.,
the need for distribution transparency in ML frameworks, or exploring the
potential benefit of considering example importance in dataset partition-
ing in DPT). When developing the tools and frameworks, we followed best

10

CHAPTER 1. INTRODUCTION

practices from the leading ML frameworks such as Keras [24] (e.g., provid-
ing high-level abstraction and modularity). We would then evaluate each
framework, tool, or method, with several experiments to verify their usabil-
ity and proposed impact. Throughout all the papers, we attempted to use
well-known benchmark datasets (such as CIFAR-10/100) and models (such
as the ResNet [25] or Inception [26] family of models) as well as application-
specific datasets (e.g., the TenGeoPSAR dataset of satellite imagery [27])
and followed the standard evaluation practices in ML and DL research.

It is worth mentioning that all developed tools and frameworks, raw
experimental results of the publications, and scripts for reproducing those
experiments have been publicly released following the publication of each
paper, and the artifact from one of the publications (Importance-aware
DPT [4]) won the best artifact award of DAIS 2023.

1.4 Sustainability and Social Aspects
It is estimated that the energy consumption and CO2 emissions associated
with training state-of-the-art Artificial Intelligence (AI) models have been
doubling every four to six months in recent years [28]. Since this doctoral
dissertation focuses on tools and methods related to training DNNs at scale,
it contributes to sustainable computing primarily by reducing the time,
energy, and resource costs associated with large-scale ML/DL experiments.

Distribution transparency (C1) enables parallelization of ML experi-
ments that otherwise would require significant effort from developers. Asyn-
chronous parallel execution of hyperparameter tuning and ablation study
trials (C2 & C3) paired with support for early stopping provided by Maggy
greatly increase the resource utilization of power-hungry GPU clusters,
while reducing the wall-clock time of experiments. When it comes to importance-
aware DPT (C4), refraining from repartitioning and redistributing the dataset
across the workers at each epoch can significantly reduce the network and
I/O overhead. Reusing the computation results (model weights) from the
hyperparameter tuning trials (C5) can reduce the wall-clock time of the
model training stage, hence reducing associated costs and energy consump-
tion. Furthermore, our work on ablation study experiments in ML/DL
(C3 & C6) contribute to the scientific experiment lifecycle in ML and DL
research, by providing easy-to-use and efficient tools and frameworks to
significantly reduce the manual labor associated with such experiments.

However, we should also consider that the research included in this doc-
toral dissertation introduces several potential risks despite its contributions
to improving the efficiency and scalability of distributed DL. A general risk
is that unintended energy consumption growth may occur due to improved
training efficiency incentivizing larger-scale experiments, potentially offset-

11

CHAPTER 1. INTRODUCTION

ting sustainability benefits [29]. In energy economics, this is referred to as
the rebound effect [30], [31].

Bias amplification is a concern in importance-aware DPT, where priori-
tizing informative examples might reinforce existing biases and lead to unfair
model outcomes. Security risks in model reuse emerge from reusing weights
from hyperparameter tuning trials, as adversarial vulnerabilities could per-
sist in the final model. Lastly, automation risks with LLMs highlight the
potential for errors or hallucinations in ML workflows if LLM-generated
modifications to ML code are not thoroughly validated.

To mitigate these risks, future work can incorporate privacy-preserving
techniques (e.g., differential privacy and federated learning), fairness as-
sessments in dataset partitioning, robust verification mechanisms for LLM-
generated ablation studies, and responsible AI practices to promote sustain-
able AI development.

1.5 Publications
The following six peer-reviewed publications (P1-P6), listed below in chrono-
logical order of publication, are included in this doctoral dissertation.

P1. Meister, M., Sheikholeslami, S., Andersson, R., Ormenisan, A.A. and
Dowling, J., 2020, March. Towards Distribution Transparency for Su-
pervised ML with Oblivious Training Functions. Workshop on MLOps
Systems, co-located with the Third Conference on Machine Learning
and Systems (MLSys). [1]

Author Contribution The author of this doctoral dissertation con-
tributed to the design of the abstraction and preparing the manuscript
text.

P2. Meister, M., Sheikholeslami, S., Payberah, A.H., Vlassov, V. and Dowl-
ing, J., 2020, December. Maggy: Scalable Asynchronous Parallel
Hyperparameter Search. In Proceedings of the 1st Workshop on Dis-
tributed Machine Learning (DistributedML), co-located with The 16th
International Conference on Emerging Networking Experiments and
Technologies (CoNEXT) (pp. 28-33). [2]

Author Contribution The author of this doctoral dissertation con-
tributed to the design and implementation of Maggy, analysis of the
results, and preparing the manuscript text.

12

CHAPTER 1. INTRODUCTION

P3. Sheikholeslami, S., Meister, M., Wang, T., Payberah, A.H., Vlassov,
V. and Dowling, J., 2021, April. AutoAblation: Automated Parallel
Ablation Studies for Deep Learning. In Proceedings of the 1st Workshop
on Machine Learning and Systems (EuroMLSys), co-located with The
16th European Conference on Computer Systems (EuroSys) (pp. 55-
61). [3]

Author Contribution The author of this doctoral dissertation im-
plemented AutoAblation as part of Maggy, designed and performed
the experiments, analyzed the results in collaboration with the co-
authors, and wrote the majority of the manuscript.

P4. Sheikholeslami, S., Payberah, A.H., Wang, T., Dowling, J. and Vlassov,
V., 2023, June. The Impact of Importance-Aware Dataset Partitioning
on Data-Parallel Training of Deep Neural Networks. In Proceedings
of the 23rd IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS) (pp. 74-89). [4]

Author Contribution The author of this doctoral dissertation dis-
cussed the idea of exploiting example importance for training speed up
with the co-authors, proposed its usage for DPT, designed and per-
formed the experiments, analyzed the results in collaboration with the
co-authors, and wrote the majority of the manuscript.

P5. Sheikholeslami, S., Wang, T., Payberah, A.H., Dowling, J. and Vlassov,
V., 2024, December. Deep Neural Network Weight Initialization from
Hyperparameter Tuning Trials. In Proceedings of the 31st International
Conference on Neural Information Processing (ICONIP). [5]

Author Contribution The author of this doctoral dissertation dis-
cussed the idea of reusing computation results from different DL steps
in each other with the co-authors, proposed the weight initialization
approach, designed and performed the experiments, analyzed the re-
sults in collaboration with the co-authors, and wrote the majority of
the manuscript.

P6. Sheikholeslami, S., Ghasemirahni, H., Payberah, A.H., Wang, T., Dowl-
ing, J. and Vlassov, V., 2025, March. Utilizing Large Language Mod-
els for Ablation Studies in Machine Learning and Deep Learning. In
Proceedings of the 5th Workshop on Machine Learning and Systems
(EuroMLSys), co-located with The 20th European Conference on Com-
puter Systems (EuroSys). [6]

13

CHAPTER 1. INTRODUCTION

Author Contribution The author of this doctoral dissertation dis-
cussed the idea utilizing LLMs for ablations studies with the co-authors,
implemented AblationMage, designed and performed the experiments,
and analyzed the results in collaboration with the co-authors, and wrote
the majority of the manuscript.

1.5.1 Other Publications
In addition to the six included papers, I have contributed to the follow-
ing peer-reviewed publications, which, though not included in this doctoral
dissertation, have nevertheless had a significant impact on my research ex-
periences during my doctoral studies.

1. Angelovska, M., Sheikholeslami, S., Dunn, B. and Payberah, A.H.,
2021. Siamese Neural Networks for Detecting Complementary Prod-
ucts. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Student Research
Workshop (pp. 65-70). [32]

2. Hagos, D.H., Kakantousis, T., Vlassov, V., Sheikholeslami, S.,
Wang, T., Dowling, J., Fleming, A., Cziferszky, A., Muerth, M., Ap-
pel, F. and others, 2021. The ExtremeEarth Software Architecture
for Copernicus Earth Observation Data. In Proceedings of the 2021
Conference on Big Data from Space (BiDS’21) (pp. 181-185). [15]

3. Koubarakis, M., Stamoulis, G., Bilidas, D., Ioannidis, T., Mandila-
ras, G., Pantazi, D.-A., Papadakis, G., Vlassov, V., Payberah, A.H.,
Wang, T., Sheikholeslami, S. and others, 2021. Artificial Intel-
ligence and Big Data Technologies for Copernicus Data: The Ex-
tremeEarth Project. In Proceedings of the 2021 Conference on Big
Data from Space (BiDS’21) (pp. 9-12). [16]

4. Hagos, D.H., Kakantousis, T., Vlassov, V., Sheikholeslami, S.,
Wang, T., Dowling, J., Paris, C., Marinelli, D., Weikmann, G., Bruz-
zone, L. and others, 2021. ExtremeEarth Meets Satellite Data from
Space. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 14, pp. 9038-9063. [33]

5. Asratyan, A., Sheikholeslami, S. and Vlassov, V., 2021. A Paral-
lel Chain Mail Approach for Scalable Spatial Data Interpolation. In
2021 IEEE International Conference on Big Data (BigData) (pp. 306-
314). [34]

6. Hagos, D.H., Kakantousis, T., Sheikholeslami, S., Wang, T., Vlassov,
V., Payberah, A.H., Meister, M., Andersson, R. and Dowling, J.,

14

CHAPTER 1. INTRODUCTION

2022. Scalable Artificial Intelligence for Earth Observation Data Us-
ing Hopsworks. Remote Sensing, 14(8), p. 1889. [14]

7. Chikafa, G., Sheikholeslami, S., Niazi, S., Dowling, J. and Vlassov,
V., 2022. Cloud-Native RStudio on Kubernetes for Hopsworks. Ad-
vances in Parallel & Distributed Processing, and Applications. Springer,
Cham. [35]

8. Johannesson, T., Rubensson, I., Sheikholeslami, S., Al-Shishtawy,
A. and Vlassov, V., 2024. DUGET: Leveraging Machine Learning
for Dynamic User Grouping and Evolution Tracking in Public Transit
Systems. In 2024 IEEE International Conference on Big Data (Big-
Data) (pp. 1785-1794). [36]

9. Xu, Z., Nordström, P., Sheikholeslami, S., Al-Shishtawy, A. and
Vlassov, V., 2024. A Semi-Supervised Model for Non-Cellular El-
ements Segmentation in Microscopy Images of Wood. In 2024 IEEE
International Conference on Big Data (BigData) (pp. 2049-2056). [37]

1.6 Software
In alignment with the principles of open science, all contributions of this
doctoral dissertation are accompanied by publicly available, open-source
implementations and reusable experimental artifacts.

• Maggy implements distribution-oblivious training functions as its
programming model and is available as open-source software on GitHub 1.

• AutoAblation extends Maggy to provide support for parallel ab-
lation studies. The instructions and artifacts to reproduce the ex-
periments from the AutoAblation paper [3] are also available on
GitHub 2.

• We released a proof-of-concept extendable PyTorch implementation
of importance-aware DPT in a GitHub repository 3. All the raw ex-
perimental results, the code to reproduce the experiments and the
plots from the corresponding paper [4] are also available in the repos-
itory in form of CSV files, Python scripts, and Jupyter Notebooks.
The artifact of this paper won the Best Artifact Award of DAIS
2023.

1https://github.com/logicalclocks/maggy
2https://github.com/ssheikholeslami/ablation-paper-experiments
3https://github.com/ssheikholeslami/importance-aware-data-parallel-train

ing

15

https://github.com/logicalclocks/maggy
https://github.com/ssheikholeslami/ablation-paper-experiments
https://github.com/ssheikholeslami/importance-aware-data-parallel-training
https://github.com/ssheikholeslami/importance-aware-data-parallel-training

CHAPTER 1. INTRODUCTION

• We released a proof-of-concept extendable PyTorch implementation of
weight initialization from hyperparameter tuning trials in a GitHub
repository 4. All the raw experimental results, the code to reproduce
the experiments and the plots from the corresponding paper [5] are
also available in the repository in form of CSV files, Python scripts,
and Jupyter Notebooks.

• Finally, AblationMage utilizes LLMs for conducting ablation stud-
ies in ML/DL. Our prototype implementation, as well instructions
to reproduce the experiments from the corresponding paper [6] are
available on GitHub 5.

1.7 Dissertation Organization
This doctoral dissertation is organized in the form of a compilation thesis
and includes six of my peer-reviewed, published research papers (P1-P6)
that form its second part (appended papers6). The first part, commonly
known in Sweden as a comprehensive summary or kappa, shall serve as
a brief overview of the research field and outline the contributions of the
doctoral dissertation.

The remainder of the first part of this doctoral dissertation is organized
as follows. The necessary background information for following along with
the appended papers is provided in Chapter 2, and Chapter 3 presents
summaries of the appended papers. Finally, Chapter 4 concludes the first
part of the doctoral dissertation, where I also discuss potential directions
for future research in related areas.

4https://github.com/ssheikholeslami/dnn-weight-initialization-from-hp-tun
ing

5https://github.com/ssheikholeslami/utilizing-llms-for-ablation-studies
6The papers are reproduced verbatim from their published versions, except for lay-

out and template adjustments. For P6, its preprint version accepted at EuroMLSys is
included.

16

https://github.com/ssheikholeslami/dnn-weight-initialization-from-hp-tuning
https://github.com/ssheikholeslami/dnn-weight-initialization-from-hp-tuning
https://github.com/ssheikholeslami/utilizing-llms-for-ablation-studies

Chapter 2

Background and Related Work

In this chapter, we provide the necessary background and related work for
understanding the main contributions, of this doctoral dissertation. We
assume the reader to have a general understanding of Machine Learning
(ML) and Deep Learning (DL), in particular the workflow for training a
Deep Neural Network (DNN). As more detailed background and related
work are presented in dedicated sections of each of the included publications,
here we focus on giving a holistic overview of the concepts related to training
of DNNs that are the foci of the contributions of this doctoral dissertation.

We start by explaining the concept of ML Systems, and then define
our understanding of ML pipelines. In particular, we discuss the training
pipelines, which this doctoral dissertation largely focuses on, in more detail.
Then, we will briefly introduce concepts and techniques such as hyperparam-
eter tuning and optimization, weight initialization for training, distributed
model training, and ablation studies in the context of ML and DL. Finally,
we provide a quick overview of the major tools and frameworks we build on,
or use, to implement our methods, with their design and features having
significant implications for our design choices. These include Apache Spark,
TensorFlow, and PyTorch.

2.1 Machine Learning Systems
An ML system can be defined as a computer system that contains models,
algorithms, data, and computing capabilities to train, maintain, or serve ML
models [38], [39]. Consequently, the term is used to refer to both ML-based
products and services (e.g., a face recognition system), and the frameworks
that are used for training, maintaining, and serving ML and DL models.
However, in the context of ablation studies, any similar definition can be
used as long as it describes a system that deals with ML models and con-

17

CHAPTER 2. BACKGROUND AND RELATED WORK

sists of several modular components that can be independently changed or
removed.

That said, from an operational point of view, an ML system can contain
a number of pipelines, which we will discuss next.

2.2 Machine Learning Pipelines
In the ML and DL community, the term pipeline is perhaps used in var-
ied contexts to refer to different collections of entities, but we define an
ML pipeline as a process that has one or several inputs (e.g., raw data, pro-
cessed data, a pre-trained model, hyperparameters, etc.), and one or several
outputs (e.g., preprocessed data, a trained model, a set of hyperparameter
values, etc.) typically in form of artifacts that can either be used indepen-
dently or as inputs to other pipelines1 [40], [41]. Using pipelines in ML
systems enables easier management and implementation of ML projects,
and pipelines are usually designed and implemented in a way that makes
them largely reusable in other ML-based projects and systems [42]. Each
ML pipeline, in turn, can be broken down into several steps. Again, due
to the difference in terminology, sometimes some of these steps are also
referred to as distinct “stages”, e.g., the “hyperparameter tuning stage”.

That being said, while there are different definitions of ML pipelines,
in this chapter we use a more recent definition that assumes three distinct
grouping of ML pipelines: feature pipelines, training pipelines, and inference
pipelines [43], [44]. Within this framework, our contributions are primarily
to the training pipelines. We will now discuss each of the three pipelines in
more detail.

2.2.1 Feature Pipelines
Simply put, feature pipelines have raw data as their input and features (and
labels) as their main output [40], [44]. As these features and labels are then
used as the input to training pipelines, feature pipelines typically include
several steps to prepare raw data (that can come from multiple sources,
in different formats, modalities, and intervals) for model training. These
steps include, but are not limited to, data ingestion, data cleaning, data
preprocessing, data transformation, data normalization, tokenization, aug-
mentation, data validation, and versioning. Efficient feature pipelines not

1One can say that a discussion topic within the ML systems community is on how
these collections of entities, stages, and steps are defined, and what level of granularity
should be used to refer to standalone pipelines. As an example, we can consider data
ingestion and data cleaning as having their own separate pipelines or define them as
individual steps within a feature pipeline.

18

CHAPTER 2. BACKGROUND AND RELATED WORK

only lead to better trained models, but also reduce computational overhead
by eliminating redundant or irrelevant information. By automating these
steps, feature pipelines ensure consistency across training and inference, en-
abling reproducibility and seamless integration into large-scale ML and DL
systems, and across several teams within an enterprise, if needed.

2.2.2 Training Pipelines
In ML and DL experiments, the (model) training pipeline is the core of
the workflow, responsible for training ML models and DNNs. For DNNs,
this essentially means optimizing the weights of the model based on a num-
ber of examples in a training dataset so that the model performs well on
a downstream task on unseen data as evaluated by its performance on a
test set. This pipeline includes several steps, namely model definition and
selection, hyperparameter tuning, weight initialization, and optimization
techniques such as gradient-based learning. After a model is sufficiently
trained, we might want to understand what contributes to its performance,
and here, techniques such as ablation studies [3], [21] or explainability or
interpretability methods are used [45].

Training modern DNNs is computationally intensive, often requiring
strategies like distributed training [4], [46], mixed-precision arithmetic, and
adaptive learning rates to balance efficiency and accuracy. Additionally,
mechanisms such as early stopping, checkpointing, and automated logging
help streamline the training process, ensuring that models converge effec-
tively while minimizing unnecessary computation.

A well-structured training pipeline also integrates automated hyperpa-
rameter tuning to optimize parameters like learning rate, batch size, and
regularization methods. Techniques such as Bayesian optimization, grid
search, and asynchronous tuning frameworks — often combined with dis-
tributed computing — help speed up this search process [2]. Furthermore,
techniques such as leveraging prior computation through reusing weights
from successful hyperparameter tuning trials for weight initialization be-
fore model training, can accelerate convergence and improve model perfor-
mance [5]. By implementing robust model training pipelines, researchers
and practitioners can efficiently train deep learning models while ensuring
scalability, reproducibility, and adaptability across different datasets and
hardware environments.

2.2.3 Inference Pipelines
When the model is sufficiently trained and evaluated, it is time to put it to
use, i.e., have it respond to inference requests. Thus, an inference pipeline

19

CHAPTER 2. BACKGROUND AND RELATED WORK

is responsible for efficiently deploying trained DNNs to, e.g., make predic-
tions on new data or generate new data instances based on the input data.
Unlike training pipelines, which focus on efficient, fast, and accurate opti-
mization and learning, the inference pipeline prioritizes speed, scalability,
and resource efficiency to handle real-world applications in production set-
tings. This pipeline includes model serialization, loading, and execution,
often incorporating techniques such as model quantization, pruning, and
hardware acceleration. For large-scale or latency-sensitive applications, in-
ference pipelines may leverage techniques like batch processing, caching, and
distributed serving frameworks to improve performance. Ensuring consis-
tency between training and inference is crucial, requiring careful design and
implementation of feature and training pipelines. By designing an optimized
inference pipeline, DL models can be seamlessly deployed into production,
delivering fast and accurate predictions while minimizing computational
overhead.

2.3 Hyperparameter Tuning and Optimization
Hyperparameter tuning and optimization is a step (or stage) in a training
pipeline that deals with finding the best set of hyperparameter values for
the model or the training algorithm2. Hyperparameters are configuration
variables that influence the training process and the model’s performance
but are not directly learned from the data [47], [48]. Perhaps the most well-
known example of a hyperparameter is the learning rate of the optimization
algorithm used for training; other examples include batch size, number of
layers, and regularization parameters. The choice of hyperparameters can
significantly impact the accuracy, convergence speed, and generalization
ability of a model. However, this requires either domain expertise, or run-
ning several trials using a hyperparameter optimization algorithm. Hence,
efficiently finding the best, or good enough sets of hyperparameter values is
critical to an ML system [49].

Traditional methods for hyperparameter tuning, such as grid search and
random search [50], can be computationally expensive and often inefficient,
especially in the context of high-dimensional hyperparameter spaces. Grid
search systematically explores predefined values, which can be exhaustive
but lacks flexibility. Random search samples hyperparameter configura-
tions randomly, providing better exploration in many cases but still being
resource-intensive for large-scale problems. These methods can be consid-
ered “undirected search” methods, since they do not take into account the
result of earlier trials for choosing the next set of values to evaluate. How-

2Or any other hyperparameters of the training pipeline.

20

CHAPTER 2. BACKGROUND AND RELATED WORK

ever, these methods can be enhanced in terms of efficiency using concepts
such as early stopping of underperforming trials, or asynchronous parallel
execution of trials. That being said, A major contribution of Maggy [2] is
that it enables asynchronous parallel execution of hyperparameter tuning
trials, including trials using random search and grid search, with support
for early stopping, on top of Apache Spark.

More recent approaches leverage past performance (i.e., the result of
earlier trials) to suggest values for the next trials. Hence, these methods
can be considered as “directed search” methods. A prominent example of
these sets of methods is Bayesian Optimization and its different variants [51].
These methods can balance between “exploration” and “exploitation”, mak-
ing them more efficient for settings with limited computational budgets3.

In distributed and large-scale environments, hyperparameter optimiza-
tion becomes even more challenging. Frameworks like Apache Spark [52] or
PyTorch Lightning [53] enable parallel exploration of hyperparameter con-
figurations, significantly reducing runtime. Asynchronous methods, such
as ASHA [17], allow continuous evaluation of configurations, dynamically
allocating resources to the most promising trials. These approaches re-
duce waste of time and compute resources, and improve scalability, enabling
practitioners to tune hyperparameters effectively even for computationally
expensive models or large datasets.

2.4 Weight Initialization Techniques
In a training pipeline, weight initialization is one of the last steps before
the actual training of the model (on the full training dataset)4, and plays a
crucial role in the training and performance of DNNs. It sets the starting
point for the model optimization process, thereby significantly influencing
the convergence speed and final accuracy of the model [54], [55]. Poorly
chosen initial weights can lead to issues such as vanishing or exploding
gradients, especially in deep architectures, hindering effective training.

Over the years, researchers have proposed various initialization strate-
gies, such as random uniform and Gaussian initializations, to address these
challenges. Some popular approaches, including Xavier [56] and Kaiming
(He) initialization [57], tailor the weight distribution to the non-linearity of

3Consequently, setting “the knob” correctly (the trade-off between exploration and
exploitation) can itself turn into a higher-level hyperparameter.

4As each hyperparameter tuning trial includes training of a model on a subset of the
training set, we also have to initialize the weights. However, when talking about weight
initialization in this doctoral dissertation, we mainly refer to the step happening before
the model training step that happens after the hyperparameter tuning step, in which we
train the model on the full training dataset using the hyperparameter values found in the
previous step.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

the activation functions, to ensure stable gradient propagation during the
optimization process. A recent review of weight initialization techniques
and approaches can be found in [58].

While these initialization techniques have proved effective compared to
naive random initialization, they often ignore valuable prior information
derived from related training tasks or steps. Most importantly, during hy-
perparameter tuning, we train several variants of a DNN on subsets of the
training data with the goal of finding suitable hyperparameter values. How-
ever, these partially trained models are typically discarded after tuning, and
only the hyperparameter values that trained the best model are used as the
output of this step. Our work on weight initialization from hyperparameter
tuning trials [5], proposes a new weight initialization method that reuses
the weights learned during the hyperparameter tuning step to initialize the
DNN weights for the actual training step5, which can improve or maintain
the best test accuracy of the trained model while reducing the overall time
and compute resources required for training.

2.5 Distributed Model Training
Training DNNs is computationally intensive, often requiring vast amounts
of data and compute resources. As model sizes and dataset complexities
continue to grow, single-host training becomes impractical due to memory
limitations and long training times [7], [11]. Distributed training addresses
these challenges by leveraging multiple computing nodes, or workers, to dis-
tribute and/or parallelize the workload, reducing training time and enabling
large-scale model training that would otherwise be infeasible.

There are two primary paradigms for distributed training of DNNs: data
parallelism and model parallelism [8]. In Data-parallel Training (DPT),
the model is replicated across multiple workers, each processing a different
subset of the data. Gradients are computed independently and aggregated
across workers before updating the shared model parameters. This approach
is widely used due to its scalability, particularly when combined with effi-
cient communication strategies such as asynchronous updates or gradient
compression. In model-parallel training, different parts of the model are
distributed across multiple workers, making it useful for extremely large
architectures that cannot fit into a single machine’s GPU memory.

Our work introduces contributions to improve the techniques used for
distributed DNN training. In particular, distribution-oblivious training
functions [1] enable seamless execution across single-host and distributed

5Without the loss of generality, we focus on hyperparameters that do not change the
architecture of the DNN, so that all hyperparameter tuning trials train the exact same
model architecture.

22

CHAPTER 2. BACKGROUND AND RELATED WORK

settings, abstracting away infrastructure-specific details. We also propose
importance-aware DPT [4], which takes into account the individual im-
portance of dataset examples rather than relying on conventional random
partitioning, leading to faster convergence and possibly better model per-
formance. These advancements reduce computational overhead, optimize
resource allocation, and make distributed DNN training more accessible
and efficient.

2.6 Ablation Studies

Generally speaking, an ablation study in the context of ML and DL refers
to a systematic examination of an ML system by removing its different com-
ponents one at a time, in order to understand the individual contributions
of those components to the overall performance of the system [3], [20]–[22].
As an example, when doing ML research that revolves around developing
novel DNN architectures or training algorithms, researchers can use abla-
tion studies to gain deeper insights into what drives the success of their
models or algorithms. For example, one can find out that they really did
not need that specific convolutional layer in their DNN after all.

Despite their importance, conducting ablation studies can be time-consuming
and computationally expensive, especially for large-scale models with nu-
merous components. Traditional approaches often involve manually tweak-
ing configurations and rerunning experiments, making the process error-
prone and resource-intensive. In the absence of dedicated frameworks, this
also means that the practitioners should also maintain multiple mostly-
similar copies of their artifacts, each corresponding to a different ablation
trial. This has motivated the need for automated solutions that can handle
the complexity and scale of modern ML systems.

Our work on AutoAblation [3], introduces an automated framework
for conducting parallel ablation studies, enabling efficient exploration of
multiple configurations simultaneously. Our final contribution, Ablation-
Mage [6], leverages the capabilities of Large Language Models (LLMs) to
facilitate the design and execution of ablation studies further. By combin-
ing automation with intelligent code generation, AblationMage signifi-
cantly reduces the overhead of manual experimentation. Together, these
contributions demonstrate that ablation studies can be transformed from a
labor-intensive process into an accessible, efficient, and integral part of the
ML research and development cycles.

23

CHAPTER 2. BACKGROUND AND RELATED WORK

2.7 Machine Learning Tools and Frameworks
Modern DL training and experimentation workflows rely on frameworks
that enable scalable training, efficient computation, and seamless integra-
tion with other distributed systems. Among these, Apache Spark, Tensor-
Flow, and PyTorch stand out as key technologies that support large-scale
data processing and DL model development.

Apache Spark [19], [59] is a distributed computing framework designed
for large-scale data processing and analytics. It provides a high-level Appli-
cation Programming Interface (API) for parallel execution across clusters,
making it a popular choice for handling big data workloads efficiently. Un-
like traditional MapReduce-based systems, Spark employs an in-memory
computing model that significantly accelerates iterative tasks, such as those
found in ML and DL workflows. Its integration with libraries like MLlib for
scalable ML and support for distributed data processing makes it well-suited
for tasks such as hyperparameter tuning and distributed deep learning. In
our work, we leverage Spark’s scalability to run parallelized jobs and tasks
and extend it to provide asynchronous parallel execution of hyperparameter
optimization and ablation study trials, enabling efficient resource utilization
in large-scale DL pipelines.

TensorFlow [60], [61] is an open-source DL framework developed by
Google, designed and optimized for high-performance numerical compu-
tation and large-scale model training. It provides flexible APIs for defin-
ing and training DNNs, with built-in support for hardware acceleration on
Graphics Processing Units (GPUs). TensorFlow’s dataflow-based execution
model enables efficient distributed training, making it a leading tool both in
academia and the industry for DL research and production deployment. We
provide TensorFlow support in Maggy and AutoAblation as the stan-
dard DL framework, and AutoAblation utilizes Keras on TensorFlow
backend to automate the generation of ablation trials.

Besides TensorFlow, PyTorch [62] is another widely used DL framework,
known for its dynamic computation graph and high adoption by researchers.
PyTorch’s Pythonic approach to DL model development makes it an ideal
framework for fast prototyping and conducting research experiments. De-
veloped by Facebook, PyTorch provides fast tensor operations, automatic
differentiation, and GPU acceleration. Its support for distributed training
through Torch Distributed (torch.distributed) allows efficient scaling across
multiple devices, whether on a single machine or several workers in a clus-
ter [63]. In our work, we leverage PyTorch’s flexibility to implement and
evaluate DNN training methods. In particular, we use it to implement
importance-aware DPT [4] and weight initialization from hyperparameter
tuning trials [5].

24

CHAPTER 2. BACKGROUND AND RELATED WORK

In the next chapter, we will provide a summary of the included papers
in this doctoral dissertation, and relate the contributions of each paper to
our main research objectives.

25

Chapter 3

Summary of Appended Papers

In this chapter, we provide the summaries of each of the included papers in
this doctoral dissertation, and map their contributions to the main research
objectives introduced in chapter 1.

Paper 1

Towards Distribution Transparency for Supervised ML With
Oblivious Training Functions

Moritz Meister, Sina Sheikholeslami, Robin Andersson,
Alexandru A. Ormenisan, and Jim Dowling

In Workshop on MLOps Systems, co-located with the Third Conference on Machine
Learning and Systems (MLSys), 2020

Abstract: Building and productionizing Machine Learning (ML) models
is a process of interdependent steps of iterative code updates, including ex-
ploratory model design, hyperparameter tuning, ablation experiments, and
model training. Industrial-strength ML involves doing this at scale, us-
ing many compute resources, and this requires rewriting the training code
to account for distribution. The result is that moving from a single host
program to a cluster hinders iterative development of the software, as it-
erative development would require multiple versions of the software to be
maintained and kept consistent. In this paper, we introduce the distribution
oblivious training function as an abstraction for ML development in Python,
whereby developers can reuse the same training function when running a
notebook on a laptop or performing scale-out hyperparameter search and
distributed training on clusters. Programs written in our framework look

27

CHAPTER 3. SUMMARY OF APPENDED PAPERS

like industry-standard ML programs as we factor out dependencies using
best-practice programming idioms (such as functions to generate models
and data batches). We believe that our approach takes a step towards uni-
fying single-host and distributed ML development.

Contributions: This paper introduces distribution-oblivious training func-
tions, a programming abstraction for ML development that allows for seam-
less execution of code across single-host setups or multiple workers. The
work presented in this paper contributes to the main research objective
O1: Develop Tools and Frameworks for Scalable, Distributed DNN Train-
ing Experiments as the programming model of two subsequent frameworks,
Maggy and AutoAblation.

28

CHAPTER 3. SUMMARY OF APPENDED PAPERS

Paper 2

Maggy: Scalable Asynchronous Parallel Hyperparameter Search
Moritz Meister, Sina Sheikholeslami, Amir H. Payberah,

Vladimir Vlassov, and Jim Dowling
In the 1st Workshop on Distributed Machine Learning (DistributedML), co-located with

the 16th International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2020

Abstract: Running extensive experiments is essential for building Machine
Learning (ML) models. Such experiments usually require iterative execution
of many trials with varying run times. In recent years, Apache Spark has
become the de-facto standard for parallel data processing in the industry,
in which iterative processes are implemented within the bulk-synchronous
parallel (BSP) execution model. The BSP approach is also being used to
parallelize ML trials in Spark. However, the BSP task synchronization bar-
riers prevent asynchronous execution of trials, which leads to a reduced
number of trials that can be run on a given computational budget. In this
paper, we introduce Maggy, an open-source framework based on Spark, to
execute ML trials asynchronously in parallel, with the ability to early stop
poorly performing trials. In the experiments, we compare Maggy with the
BSP execution of parallel trials in Spark and show that on random hyper-
parameter search on a convolutional neural network for the Fashion-MNIST
dataset Maggy reduces the required time to execute a fixed number of tri-
als by 33% to 58%, without any loss in the final model accuracy.

Contributions: This paper introduces Maggy, an open-source framework
for asynchronous, parallel hyperparameter tuning that can run arbitrary
Python code on top of Apache Spark using distribution-oblivious training
functions. Through experimental evaluation, we show that Maggy can sig-
nificantly reduce the execution time of hyperparameter tuning trials. The
work presented in this paper contributes to the main research objective
O1: Develop Tools and Frameworks for Scalable, Distributed DNN Training
Experiments as a tool and framework.

29

CHAPTER 3. SUMMARY OF APPENDED PAPERS

Paper 3

AutoAblation: Automated Parallel Ablation Studies for Deep
Learning

Sina Sheikholeslami, Moritz Meister, Tianze Wang, Amir H. Payberah,
Vladimir Vlassov, and Jim Dowling

In the 1st Workshop on Machine Learning and Systems (EuroMLSys), co-located with
the 16th European Conference on Computer Systems (EuroSys), 2021

Abstract: Ablation studies provide insights into the relative contribution
of different architectural and regularization components to machine learning
models’ performance. In this paper, we introduce AutoAblation, a new
framework for the design and parallel execution of ablation experiments.
AutoAblation provides a declarative approach to defining ablation ex-
periments on model architectures and training datasets, and enables the
parallel execution of ablation trials. This reduces the execution time and
allows more comprehensive experiments by exploiting larger amounts of
computational resources. We show that AutoAblation can provide near-
linear scalability by performing an ablation study on the modules of the
Inception-v3 network trained on the TenGeoPSAR dataset.

Contributions: This paper introduces AutoAblation, the first dedi-
cated framework for automated design and parallel execution of ablation
study experiments in ML and DL, implemented on top of Maggy. We also
provide a formal definition of ablation studies in the context of ML and
DL. The work presented in this paper contributes to the research objectives
O1: Develop Tools and Frameworks for Scalable, Distributed DNN Training
Experiments and O3: Improve the state of Ablation Studies in ML and DL
as a tool and framework.

30

CHAPTER 3. SUMMARY OF APPENDED PAPERS

Paper 4

The Impact of Importance-aware Dataset Partitioning on
Data-parallel Training of Deep Neural Networks

Sina Sheikholeslami, Amir H. Payberah, Tianze Wang, Jim Dowling, and
Vladimir Vlassov

In the 23rd IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS), 2023

Abstract: Deep neural networks used for computer vision tasks are typi-
cally trained on datasets consisting of thousands of images, called examples.
Recent studies have shown that examples in a dataset are not of equal im-
portance for model training and can be categorized based on quantifiable
measures reflecting a notion of “hardness” or “importance”. In this work,
we conduct an empirical study of the impact of importance-aware parti-
tioning of the dataset examples across workers on the performance of data-
parallel training of deep neural networks. Our experiments with CIFAR-
10 and CIFAR-100 image datasets show that data-parallel training with
importance-aware partitioning can perform better than vanilla data-parallel
training, which is oblivious to the importance of examples. More specifi-
cally, the proper choice of the importance measure, partitioning heuristic,
and the number of intervals for dataset repartitioning can improve the best
accuracy of the model trained for a fixed number of epochs. We conclude
that the parameters related to importance-aware data-parallel training, in-
cluding the importance measure, number of warmup training epochs, and
others defined in the paper, may be considered as hyperparameters of data-
parallel model training.

Contributions: This paper introduces Importance-aware DPT, a novel
dataset partitioning approach for DPT of DNNs that considers dataset ex-
ample importance instead of random partitioning. Through experimental
evaluation, we show that compared to vanilla DPT, which uses random
partitioning, importance-aware DPT can reduce model training time while
maintaining model accuracy. The work presented in this paper contributes
to the main research objective O2: Enhance the Efficiency of Existing DNN
Training Techniques as a method.

31

CHAPTER 3. SUMMARY OF APPENDED PAPERS

Paper 5

Deep Neural Network Weight Initialization from
Hyperparameter Tuning Trials

Sina Sheikholeslami, Tianze Wang, Amir H. Payberah, Jim Dowling, and
Vladimir Vlassov

In the 31st International Conference on Neural Information Processing (ICONIP),
2024

Abstract: Training of deep neural networks from scratch requires initial-
ization of the neural network weights as a first step. Over the years, many
policies and techniques for weight initialization have been proposed and
widely used, including Kaiming initialization and different variants of ran-
dom initialization. On the other hand, another requirement for starting the
training stage is to choose and set suitable hyperparameter values, which
are usually obtained by performing several hyperparameter tuning trials.
In this paper, we study the suitability of weight initialization using weights
obtained from different epochs of hyperparameter tuning trials and compare
it to Kaiming uniform (random) weight initialization for image classification
tasks. Based on an experimental evaluation using ResNet-18, ResNet-152,
and InceptionV3 models, and CIFAR-10, CIFAR-100, Tiny ImageNet, and
Food-101 datasets, we show that weight initialization from hyperparameter
tuning trials can speed up the training of deep neural networks by up to
2x while maintaining or improving the best test accuracy of the trained
models, when compared to random initialization.

Contributions: This paper introduces A novel weight initialization ap-
proach for training DNNs that reuses computations from the hyperparame-
ter tuning stage. Through experimental evaluation, we show that compared
to random weight initialization, this approach can reduce the training time
while maintaining or improving model accuracy. The work presented in this
paper contributes to the main research objective O2: Enhance the Efficiency
of Existing DNN Training Techniques as a method.

32

CHAPTER 3. SUMMARY OF APPENDED PAPERS

Paper 6

Utilizing Large Language Models for Ablation Studies in
Machine Learning and Deep Learning

Sina Sheikholeslami, Hamid Ghasemirahni, Amir H. Payberah, Tianze
Wang, Jim Dowling, and Vladimir Vlassov

In the 5th Workshop on Machine Learning and Systems (EuroMLSys), co-located with
the 20th European Conference on Computer Systems (EuroSys), 2025

Abstract: In Machine Learning (ML) and Deep Learning (DL) research,
ablation studies are typically performed to provide insights into the individ-
ual contribution of different building blocks and components of an ML/DL
system (e.g., a deep neural network), as well as to justify that certain ad-
ditions or modifications to an existing ML/DL system can result in the
proposed improved performance. Although dedicated frameworks for per-
forming ablation studies have been introduced in recent years, conducting
such experiments is still associated with requiring tedious, redundant work,
typically involving maintaining redundant and mostly-identical versions of
code that correspond to different ablation trials. Inspired by the recent
promising performance of Large Language Models (LLMs) in the genera-
tion and analysis of ML/DL code, in this paper we discuss the potential
of LLMs as facilitators of ablation study experiments for scientific research
projects that involve or deal with ML and DL models. We first discuss the
different ways in which LLMs can be utilized for ablation studies and then
present the prototype of a tool called AblationMage, that leverages LLMs
to semi-automate the overall process of conducting ablation study exper-
iments. We showcase the usability of AblationMage as a tool through
three experiments, including one in which we reproduce the ablation studies
from a recently published applied DL paper.

Contributions: This paper introduces AblationMage, a tool based on
LLMs that further simplifies the conduction of ablation studies. The work
presented in this paper contributes to the main research objective O3: Im-
prove the state of Ablation Studies in ML and DL as a tool.

33

Chapter 4

Conclusions and Future Work

We now conclude the first part of this doctoral dissertation by providing
a brief summary of our contributions and discussing a number of possible
avenues for further research and study.

First, we describe how we have pursued the main research objectives and
addressed the challenges introduced in section 1.1, and our contributions.
We highlight how each contribution enhances the existing landscape of scal-
able Machine Learning (ML)/Deep Learning (DL) training and automated
experimentation, providing practical improvements while opening new re-
search directions in these areas. Finally, we discuss a number of possible
avenues for further research and study.

The second part of the dissertation, which immediately follows this chap-
ter, contains verbatim copies of the peer-reviewed manuscripts I co-authored
that contribute to this doctoral dissertation.

4.1 Dissertation Summary
This doctoral dissertation introduces tools and methods that improve the
efficiency, scalability, and usability of distributed ML and DL workflows,
with those related to training of Deep Neural Networks (DNNs) as a partic-
ular focus. In section 1.1, we identified a number of challenges in large-scale
and distributed training of DNNs, and defined three research objectives to
be pursued in order to address the said challenges.

For Objective O1 (Develop Tools and Frameworks for Scal-
able, Distributed DNN Training Experiments), we introduce tools
and methods that simplify and improve distributed deep learning work-
flows. A major challenge in this area is the complexity of transitioning from
single-host to distributed training, as well as mitigating straggler effects
in distributed environments. To pursue this objective and address these

35

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

challenges, we developed distribution-oblivious training functions (C1) [1]
to unify single-host and distributed ML/DL training functions. We further
extended this work by developing MaggyMaggyMaggy (C2) [2], a framework for scal-
able, asynchronous parallel hyperparameter tuning, and AutoAblationAutoAblationAutoAblation
(C3) [3], a framework enabling automated parallel ablation study experi-
ments. These tools provide abstractions and automation that enhance us-
ability while maintaining efficiency in distributed training environments.
The proposed distribution-oblivious training functions reduce the program-
ming complexity typically associated with distributed ML/DL workflows,
lowering the entry barrier for practitioners and researchers. Maggy ad-
vances hyperparameter tuning frameworks by incorporating distribution-
oblivious training fuctions with asynchronous execution and early stop-
ping, making large-scale hyperparameter tuning significantly more resource-
efficient. Additionally, AutoAblation introduces a novel automated ap-
proach to ablation studies in ML/DL, enabling systematic model evaluation
while leveraging parallel execution for increased efficiency and distribution-
oblivious training functions for usability.

For Objective O2 (Enhance the Efficiency of Existing DNN
Training Techniques), we focused on improving the computational effi-
ciency of existing widely-used distributed training techniques and approaches
by addressing inefficiencies in dataset partitioning step in Data-parallel
Training (DPT), and exploiting computation reuse for the weight initial-
ization step that is a pre-requisite for model training. The standard DPT
approach does not consider the varying importance of dataset examples,
ignoring the opportunity for exploiting example importance to improve the
efficiency of model training. To improve this, we introduced importance-
aware DPT (C4) [4], which partitions datasets based on example impor-
tance rather than random assignment, reducing network and Input/Output
(I/O) overhead while maintaining or improving model accuracy. Further-
more, we explored computation reuse across different steps in the training
pipeline. We proposed a novel weight initialization method (C5) [5]
that reuses model weights from hyperparameter tuning trials, leading to
faster convergence and potential improvements in final model accuracy. The
proposed importance-aware DPT method advances existing data-parallel
training techniques by incorporating importance-based dataset partitioning,
an approach that significantly reduces resource overhead while preserving
model performance. This challenges the long-standing assumption of ran-
dom data partitioning in distributed training and provides a new perspec-
tive on optimizing DPT. Meanwhile, the novel weight initialization strategy
from hyperparameter tuning trials introduces a practical form of compu-
tation reuse in DL workflows, reducing the computational cost of model
training while maintaining or even improving convergence speed and final

36

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

model accuracy.
Finally, for Objective O3 (Improve the State of Ablation Studies

in ML and DL), we tackled the high computational and manual effort re-
quired for conducting ablation studies, which are crucial for understanding
the contributing factors to the performance of a DNNs. To automate and
parallelize ablation experiments, we introduced AutoAblationAutoAblationAutoAblation (C3) [3],
the first dedicated framework for automated ablation studies in ML/DL.
Later, leveraging advancements in Large Language Models (LLMs), we de-
veloped AblationMageAblationMageAblationMage (C6) [6], a tool that utilizes LLMs to automate the
design and execution of ablation studies, significantly reducing human effort
and redundancy in conducting these experiments. AutoAblation repre-
sents a step forward in systematic model evaluation, making it easier and
more efficient to perform large-scale ablation studies in ML/DL while min-
imizing the need for manual intervention. AblationMage further pushes
the boundaries of automation in ML/DL research by leveraging LLMs to
generate and modify ablation study configurations, showcasing how genera-
tive artificial intelligence can facilitate the scientific research process. These
contributions not only reduce the effort required to conduct ablation stud-
ies but also establish a foundation for more automated and scalable model
evaluation frameworks.

To summarize, the key contributions presented in this dissertation are:

C1. Distribution-oblivious Training Functions: A novel programming
abstraction that enables a seamless transition between single-host and
distributed ML/DL training without requiring significant code modifi-
cations or familiarity with distributed computing frameworks [1].

C2. MaggyMaggyMaggy: An open-source framework for scalable, asynchronous, and
parallel hyperparameter tuning that improves resource utilization and
reduces training time, while leveraging distribution-oblivious training
functions for increased usability [2].

C3. AutoAblationAutoAblationAutoAblation: The first dedicated framework for automated, par-
allel ablation study experiments in ML/DL, enabling a systematic ap-
proach to the evaluation of different components (e.g., dataset features
or model layers) in an ML system [3].

C4. Importance-aware DPT: A dataset partitioning strategy that con-
siders data example importance for partitioning the dataset across
data-parallel workers, leading to improved training efficiency and model
performance [4].

C5. Weight Initialization from Hyperparameter Tuning Trials: A
novel weight initialization strategy that reuses model weights learned

37

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

during hyperparameter tuning, accelerating model convergence while
maintaining or improving model accuracy [5].

C6. AblationMageAblationMageAblationMage: A tool leveraging LLMs to automate and streamline
the execution of ablation studies in ML/DL [6].

Furthermore, distribution-oblivious training functions (C1), Maggy (C2)
and AutoAblation (C3) were integrated into Hopsworks [13], a platform
for ML/DL, as presented in [14].

While the experimental evaluation of our introduced tools and methods
mainly involves benchmark image classification tasks, we should mention
that all of our contributions are domain-independent, and can be extended
to or used in any ML/DL training experiment. Ablation studies are part of
the scientific research process in ML/DL and thus are domain-independent
by definition. In particular, Maggy can essentially work with any Python
function that returns a value (or metric); validation or test accuracies are
such metrics that are used in hyperparameter tuning and ablation study
trials. Regarding importance-aware DPT, the dataset partitioning heuris-
tics can be applied to any DNN training task that can benefit from data-
parallelism, and our released proof-of-concept allows for effortless imple-
mentation of different heuristics and importance metrics and measures. The
same argument can be made for our weight initialization approach and its
released proof-of-concept.

4.2 Broader Impact
The rapid adoption of Artificial Intelligence (AI), and in particular ML
and DL applications, has led to a massive increase in computational de-
mands, emphasizing the need for scalable and efficient training methodolo-
gies. This doctoral dissertation contributes to computational sustainability
by reducing the resource requirements of ML/DL workflows, particularly
in large-scale parallel and distributed training settings. By improving hy-
perparameter tuning, dataset partitioning, and weight initialization steps
in the model training pipeline, this work reduces redundant computations,
improves parallelization efficiency, and minimizes energy consumption, thus
aligning with sustainable AI practices.

Additionally, tools such as Maggy, AutoAblation, and Ablation-
Mage democratize access to usable and scalable ML experimentation by
abstracting away the complexities of distributed computing or eliminating
the tedious work required for preparing redundant experimentation arti-
facts.

38

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

However, we should also mention that these contributions might also
pose potential risks. In particular, lowering the entry barrier for practition-
ers and reducing the costs associated with the training of DNNs, can lead
to an overall higher global energy consumption or other possible negative
societal impacts of AI [29].

4.3 Future Work
In general, for future work, we would like to increase the scale and dimen-
sions of our experimental validation setups. Although all the contributions
of this doctoral dissertation have been evaluated through experiments on
benchmark tasks and datasets in ML/DL, there is room for further improve-
ment. In particular, most of our downstream tasks revolve around image
classification (a very popular task in DL research). Hence, we would be
interested in evaluating our tools and methods on training DNNs for other
downstream tasks (e.g., language modeling) on more families of DNNs, and
other data modalities (e.g., text and tabular data). There is also a possibil-
ity of studying the proposed contributions from a theoretical perspective.

We would also like to scale up the size and complexity of the datasets
used for the experiments, especially since some of the benefits of our con-
tributions (e.g., the reduction of network and I/O overhead in importance-
aware data-parallel training) will become more clear in larger scales. For
importance-aware DPT, we are also interested in investigating the use of
other importance measures and metrics (e.g., example forgetting [64]) for
dataset partitioning.

Finally, for our weight initialization method, we would like to study
what leads to some dataset/model combinations working better with this
approach than other combinations.

39

Bibliography

[1] M. Meister, S. Sheikholeslami, R. Andersson, A. A. Ormenisan, and J.
Dowling, “Towards distribution transparency for supervised ml with
oblivious training functions,” in Workshop on MLOps Systems, 2020.

[2] M. Meister et al., “Maggy: Scalable asynchronous parallel hyperpa-
rameter search,” in Workshop on Distributed Machine Learning, 2020,
pp. 28–33.

[3] S. Sheikholeslami, M. Meister, T. Wang, A. H. Payberah, V. Vlassov,
and J. Dowling, “Autoablation: Automated parallel ablation studies
for deep learning,” in Proceedings of the 1st Workshop on Machine
Learning and Systems, 2021, pp. 55–61.

[4] S. Sheikholeslami, A. H. Payberah, T. Wang, J. Dowling, and V.
Vlassov, “The impact of importance-aware dataset partitioning on
data-parallel training of deep neural networks,” in IFIP International
Conference on Distributed Applications and Interoperable Systems,
Springer, 2023, pp. 74–89.

[5] S. Sheikholeslami, T. Wang, A. H. Payberah, J. Dowling, and V.
Vlassov, “Deep neural network weight initialization from hyperparam-
eter tuning trials,” in International Conference on Neural Information
Processing (ICONIP), Springer, 2025, pp. 74–89.

[6] S. Sheikholeslami, H. Ghasemirahni, A. H. Payberah, T. Wang, J.
Dowling, and V. Vlassov, “Utilizing large language models for ablation
studies in machine learning and deep learning,” in Proceedings of the
5th Workshop on Machine Learning and Systems, 2025.

[7] G. Wang, Distributed Machine Learning with Python: Accelerating
model training and serving with distributed systems. Packt Publish-
ing Ltd, 2022.

[8] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-
efficient distributed deep learning: A comprehensive survey,” arXiv
preprint arXiv:2003.06307, 2020.

41

BIBLIOGRAPHY

[9] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Computing
Surveys (CSUR), vol. 52, no. 4, pp. 1–43, 2019.

[10] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen,
and J. S. Rellermeyer, “A survey on distributed machine learning,”
Acm computing surveys (csur), vol. 53, no. 2, pp. 1–33, 2020.

[11] R. Mayer and H.-A. Jacobsen, “Scalable deep learning on distributed
infrastructures: Challenges, techniques, and tools,” ACM Computing
Surveys (CSUR), vol. 53, no. 1, pp. 1–37, 2020.

[12] X. Liu, D. Gu, Z. Chen, et al., “Rise of distributed deep learning train-
ing in the big model era: From a software engineering perspective,”
ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 6, pp. 1–26, 2023.

[13] M. Ismail et al., “Hopsworks: Improving user experience and devel-
opment on hadoop with scalable, strongly consistent metadata,” in
2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), IEEE, 2017, pp. 2525–2528.

[14] D. H. Hagos, T. Kakantousis, S. Sheikholeslami, et al., “Scalable arti-
ficial intelligence for earth observation data using hopsworks,” Remote
Sensing, vol. 14, no. 8, p. 1889, 2022.

[15] D. H. Hagos, T. Kakantousis, V. Vlassov, et al., “The extremeearth
software architecture for copernicus earth observation data,” in Pro-
ceedings of the 2021 Conference on Big Data from Space (BiDS’21),
2021, pp. 181–185.

[16] M. Koubarakis, G. Stamoulis, D. Bilidas, et al., “Artificial intelli-
gence and big data technologies for copernicus data: The extremeearth
project,” in Proceedings of the 2021 Conference on Big Data from
Space (BiDS’21), 2021, pp. 9–12.

[17] L. Li, K. Jamieson, A. Rostamizadeh, et al., “A system for massively
parallel hyperparameter tuning,” Proceedings of Machine Learning
and Systems, vol. 2, pp. 230–246, 2020.

[18] L. G. Valiant, “A bridging model for parallel computation,” Commu-
nications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[19] M. Zaharia et al., “Spark: Cluster computing with working sets,” Hot-
Cloud, vol. 10, no. 10-10, p. 95, 2010.

[20] I. Fostiropoulos and L. Itti, “Ablator: Robust horizontal-scaling of
machine learning ablation experiments,” in International Conference
on Automated Machine Learning, PMLR, 2023, pp. 19–1.

42

BIBLIOGRAPHY

[21] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation studies
in artificial neural networks,” arXiv preprint arXiv:1901.08644, 2019.

[22] I. Hameed, S. Sharpe, D. Barcklow, et al., “Based-xai: Breaking abla-
tion studies down for explainable artificial intelligence,” arXiv preprint
arXiv:2207.05566, 2022.

[23] A. Hevner, S. Chatterjee, A. Hevner, and S. Chatterjee, “Design sci-
ence research in information systems,” Design research in information
systems: theory and practice, pp. 9–22, 2010.

[24] F. Chollet et al., Keras, https://keras.io, 2015.
[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-

age recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

[27] C. Wang et al., “A labelled ocean sar imagery dataset of ten geophysi-
cal phenomena from sentinel-1 wave mode,” Geoscience Data Journal,
vol. 6, no. 2, pp. 105–115, 2019.

[28] C. E. Tripp, J. Perr-Sauer, J. Gafur, et al., “Measuring the energy con-
sumption and efficiency of deep neural networks: An empirical anal-
ysis and design recommendations,” arXiv preprint arXiv:2403.08151,
2024.

[29] R. Vinuesa, H. Azizpour, I. Leite, et al., “The role of artificial intel-
ligence in achieving the sustainable development goals,” Nature com-
munications, vol. 11, no. 1, p. 233, 2020.

[30] C. Von Utfall Danielsson, “The rebound effect: Theory, evidence and
implications for energy policy,” 2010.

[31] A. Druckman, M. Chitnis, S. Sorrell, and T. Jackson, “Missing carbon
reductions? exploring rebound and backfire effects in uk households,”
Energy policy, vol. 39, no. 6, pp. 3572–3581, 2011.

[32] M. Angelovska, S. Sheikholeslami, B. Dunn, and A. H. Payberah,
“Siamese neural networks for detecting complementary products,” in
Proceedings of the 16th conference of the European chapter of the asso-
ciation for computational linguistics: student research workshop, 2021,
pp. 65–70.

[33] D. H. Hagos, T. Kakantousis, V. Vlassov, et al., “Extremeearth meets
satellite data from space,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 14, pp. 9038–9063, 2021.

43

https://keras.io

BIBLIOGRAPHY

[34] A. Asratyan, S. Sheikholeslami, and V. Vlassov, “A parallel chain
mail approach for scalable spatial data interpolation,” in 2021 IEEE
International Conference on Big Data (Big Data), 2021, pp. 306–314.

[35] G. Chikafa, S. Sheikholeslami, S. Niazi, J. Dowling, and V. Vlassov,
“Cloud-native rstudio on kubernetes for hopsworks,” Advances in Par-
allel & Distributed Processing, and Applications, 2022.

[36] T. Johannesson, I. Rubensson, S. Sheikholeslami, A. Al-Shishtawy,
and V. Vlassov, “Duget: Leveraging machine learning for dynamic
user grouping and evolution tracking in public transit systems,” in
2024 IEEE International Conference on Big Data (BigData), IEEE,
2024, pp. 1785–1794.

[37] Z. Xu, P. Nordström, S. Sheikholeslami, A. Al-Shishtawy, and V.
Vlassov, “A semi-supervised model for non-cellular elements segmen-
tation in microscopy images of wood,” in 2024 IEEE International
Conference on Big Data (BigData), IEEE, 2024, pp. 2049–2056.

[38] What are ml systems? [Online]. Available: https://www.hopsworks.
ai/dictionary/ml-systems.

[39] C. Huyen, Designing machine learning systems. O’Reilly Media, Inc.,
2022.

[40] What is a machine learning pipeline? [Online]. Available: https://
www.hopsworks.ai/dictionary/ml-pipeline.

[41] [Online]. Available: https://scikit- learn.org/1.5/modules/
generated/sklearn.pipeline.Pipeline.html.

[42] H. Hapke and C. Nelson, Building machine learning pipelines. O’Reilly
Media, 2020.

[43] J. Dowling, Building Machine Learning Systems with a Feature Store.
O’Reilly Media, 2025.

[44] J. de la Rúa Martínez, F. Buso, A. Kouzoupis, et al., “The hopsworks
feature store for machine learning,” in Companion of the 2024 Inter-
national Conference on Management of Data, 2024, pp. 135–147.

[45] C. Molnar, Interpretable machine learning. Lulu.com, 2019.
[46] Z. Tang, S. Shi, W. Wang, B. Li, and X. Chu, “Communication-

efficient distributed deep learning: A comprehensive survey,” arXiv
preprint arXiv:2003.06307, 2020.

[47] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algo-
rithms and applications,” arXiv preprint arXiv:2003.05689, 2020.

[48] M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated
machine learning: Methods, systems, challenges, pp. 3–33, 2019.

44

https://www.hopsworks.ai/dictionary/ml-systems
https://www.hopsworks.ai/dictionary/ml-systems
https://www.hopsworks.ai/dictionary/ml-pipeline
https://www.hopsworks.ai/dictionary/ml-pipeline
https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html

BIBLIOGRAPHY

[49] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learn-
ing: Methods, Systems, Challenges. Springer Nature, 2019.

[50] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.,” Journal of machine learning research, vol. 13, no. 2, 2012.

[51] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[52] X. Meng, J. Bradley, B. Yavuz, et al., “Mllib: Machine learning in
apache spark,” Journal of Machine Learning Research, vol. 17, no. 34,
pp. 1–7, 2016.

[53] W. A. Falcon et al., “Pytorch Lightning,” 2019.
[54] N. Weymaere and J.-P. Martens, “On the initialization and optimiza-

tion of multilayer perceptrons,” IEEE Transactions on Neural Net-
works, vol. 5, no. 5, pp. 738–751, 1994.

[55] D. Arpit, V. Campos, and Y. Bengio, “How to initialize your network?
robust initialization for weightnorm & resnets,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[56] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[58] M. V. Narkhede, P. P. Bartakke, and M. S. Sutaone, “A review on
weight initialization strategies for neural networks,” Artificial intelli-
gence review, vol. 55, no. 1, pp. 291–322, 2022.

[59] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing,” in Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementa-
tion, USENIX Association, 2012, pp. 2–2.

[60] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 265–283.

[61] Martín Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow:
Large-scale machine learning on heterogeneous systems, Software avail-
able from tensorflow.org, 2015. [Online]. Available: https://www.
tensorflow.org/.

45

https://www.tensorflow.org/
https://www.tensorflow.org/

BIBLIOGRAPHY

[62] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in Neural Information Processing
Systems, vol. 32, pp. 8026–8037, 2019.

[63] S. Li, Y. Zhao, R. Varma, et al., “Pytorch distributed: Experiences
on accelerating data parallel training,” Proceedings of the VLDB En-
dowment, vol. 13, no. 12, 2020.

[64] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and
G. J. Gordon, “An empirical study of example forgetting during deep
neural network learning,” in ICLR, 2019.

46

Part II

Appended Papers

47

Paper 1

Towards Distribution Transparency
for Supervised ML With Oblivious
Training Functions

Workshop on MLOps Systems, co-located with the Third Conference
on Machine Learning and Systems (MLSys), 2020

Towards Distribution Transparency for
Supervised ML With Oblivious Training

Functions

Moritz Meister1, Sina Sheikholeslami2, Robin Andersson1,
Alexandru A. Ormenisan1,2, and Jim Dowling1,2

1 Logical Clocks AB, Stockholm, Sweden
2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

Building and productionizing Machine Learning (ML) models is
a process of interdependent steps of iterative code updates, in-
cluding exploratory model design, hyperparameter tuning, abla-
tion experiments, and model training. Industrial-strength ML
involves doing this at scale, using many compute resources, and
this requires rewriting the training code to account for distribu-
tion. The result is that moving from a single host program to a
cluster hinders iterative development of the software, as iterative
development would require multiple versions of the software to
be maintained and kept consistent. In this paper, we introduce
the distribution oblivious training function as an abstraction for
ML development in Python, whereby developers can reuse the
same training function when running a notebook on a laptop
or performing scale-out hyperparameter search and distributed
training on clusters. Programs written in our framework look
like industry-standard ML programs as we factor out dependen-
cies using best-practice programming idioms (such as functions
to generate models and data batches). We believe that our ap-
proach takes a step towards unifying single-host and distributed
ML development.

1 Introduction
Machine learning (ML) is a complex subject, and the process of learning to
program (train) ML applications usually involves starting with the simplest
possible program, avoiding complexities such as feature engineering and
scalability (distributed programming), and slowly adding complexity over
time. In particular, moving from single-host applications to distributed ap-
plications is challenging, especially for supervised ML as it requires rewrit-
ing entire applications. This keeps many developers, who are used to single

51

PAPER 1. DISTRIBUTION TRANSPARENCY FOR SUPERVISED ML

host debugging and testing and have limited knowledge about distributed
environments, from discovering the benefits of distributed ML: faster hy-
perparameter sweeps and reduced training times.

The contribution of this paper is the design and implementation a frame-
work that unifies single-host and distributed training functions based on an
abstraction we call the distribution oblivious training function. We make
training functions reusable by following the dependency inversion princi-
ple [1] to factor out those aspects of training functions that are subject to
change between single-host and distributed applications. We demonstrate
our framework for Keras/TensorFlow (TF) programs, but the approach gen-
eralizes to other frameworks that support distribution, such as PyTorch.

2 Distribution Transparency in ML

Figure 1: Inner and outer loops for the training function

Transparency in distributed systems [2] refers to hiding distribution-
specific aspects of an application from the developer - for example, a devel-
oper invoking a function may not know (or need to know) if the function
she is calling is local to her application or on a remote server. Distribu-
tion transparency enables developers to write code that is reusable between
single-host and distributed instantiations of a program.

In supervised ML, the core logic that is common across all programs is
the training function - a series of steps including defining a model architec-
ture, then ingesting labelled training data and feeding it to the model and
iterating until some termination (or convergence) criteria are met. The out-
put of the training function is a model that can be used to make predictions
on new data, drawn from the same distribution as the training data.

Training functions, however, can be used in many different contexts when
we distribute supervised ML programs: single host notebooks, distributed
hyperparamter search, parallel ablation studies, and distributed training

52

PAPER 1. DISTRIBUTION TRANSPARENCY FOR SUPERVISED ML

Table 1: Distributed aspects of the training function that need to be
re-written for different distributed contexts

Process Step Distributed aspects of the Training Function
HParam Search Model Architecture, Hyperparameters, Early

Stopping, Optimizer, Regularization
Ablation Study Model Architecture, Features (Input Data), Reg-

ularization, Optimizer
Distributed Training Features (Input Data), Optimizer, Accelerator-

awareness

are common examples. However, existing frameworks for supervised ML,
such as Keras/TensorFlow and PyTorch, require training functions to be
rewritten to account for the distribution strategy, what accelerators the
computations are scheduled on, and whether the optimizer needs to share its
results with other hosts (for distributed training). In figure 1, we illustrate
how training functions can be used - as part of (1) the inner loop when
the same training function is either run on a single host or on many hosts
in parallel (as part of data-parallel distributed training) using (distributed)
stochastic gradient descent, or (2) the outer loop when the training function
is run on different hosts for example with different hyperparameters for each
host, and a global optimizer that collects the results of hyperparameter trials
to decide on subsequent trials, searching for better hyperparameters.

Table 1 lists the aspects of training functions in Keras/TensorFlow that
need to be rewritten for a distribution context, compared to the single-
host Python program. For the inner loop, the hyperparameters and model
architecture can vary, and code needs to be rewritten to account for how
many hardware accelerators are being used. For the outer loop, the variable
aspects related to model configuration are controlled by a global optimizer,
such as a Bayesian optimizer proposing different configurations (trials), or
an ablator, generating trials by leaving one or more components out at a
time. The trials can be run in parallel on a cluster and the results collected
by a global optimizer or ablator.

3 Distribution Oblivious Training Function
In figure 2, we can see how developers structure their applications to write
distribution oblivious training functions and include them in the different
distribution contexts. Firstly, developers write the common training func-
tion, and as is now considered good ML engineering practice, developers

53

PAPER 1. DISTRIBUTION TRANSPARENCY FOR SUPERVISED ML

Figure 2: ML model development process

also write separate functions for model architecture generation and data
batch reading. The training function becomes a parameterizable higher or-
der function with generator functions and hyperparameter configurations as
input. For hyperparameter search, a search space needs to be defined from
which a global optimizer (can be user-defined) draws the hyperparameters
from, but for other cases, the hyperparameters are fixed. For example, the
final distributed training step should make use of the best configuration
found in the previous search experiments. The distribution context and
environment can be initialized outside the training function (it is oblivious
to it) to make appropriate use of the resources such as accelerators. Other
means to achieve transparency of the two loops include the use of pluggable
hooks, such as the Keras/TF callbacks.

4 Unified Execution Framework with Jupyter
Notebooks on Hopsworks

With Hopsworks [3] and the Maggy framework [4][5], we provide a unified
development and execution framework for distribution transparent Jupyter
notebooks [6]. That is, the developer writes a Jupyter notebook that can
be run/debugged using a single host Python kernel, and the same notebook
can also be run on a cluster using many hosts and hardware accelerators
as a PySpark application. The developer only needs to set a distribution
context parameter that controls which cells to run in the notebook - the
oblivious training function is a single cell used by all the different distri-
bution contexts. The notebooks can also be parameterized and run by an

54

PAPER 1. DISTRIBUTION TRANSPARENCY FOR SUPERVISED ML

external workflow manager (Airflow) in production ML pipelines, similar to
Papermill by Neflix [7].

5 Related Work

Previous work on this topic can be categorized in three dimensions: Pipeline
orchestration, ML lifecycle management and automated ML (AutoML).
Pipeline orchestration covers the aspect of taking an entire ML pipeline
into production, which includes data preparation and engineering, model-
ing, training, serving inference and managing the deployments. TensorFlow
Extended (TFX) [8] is a TF based platform with the goal of minimizing
glue code between these pipeline steps. Compared to the previous category,
ML lifecycle management is concerned with the iterative nature of the ML
development process. By tracking artifacts, logs and experiments, results
can be easily reproduced, making the process more transparent with respect
to the trained models themselves. MLFlow [9] achieves this by allowing the
user to make explicit calls to log this meta-data. AutoML aims to auto-
mate every aspect of the pipeline. However, due to the high computational
requirements, recent work was focusing on the automation of the separate
steps first. Because many parts of a ML model behave like a black-box
and can be encoded in hyperparameters, one can fall back on search for
optimization of such parameters [10].

6 Summary

In this short paper, we introduced the distribution oblivious training func-
tion for supervised ML and showed how it can be used to write distribution
transparent ML programs. In the Hopsworks platform, this provides de-
velopers with a unified framework and codebase where Jupyter notebooks
can first be developed as single-host Python programs, then extended to
distributed contexts, and iterative development across single-host and dis-
tributed versions is not just possible, but encouraged. The distribution
oblivious training function can have several benefits for ML systems. It can
(1) enable reductions in technical debt in pipeline orchestration, (2) enable
iterative development between laptops and clusters, and (3) improve model
training lifecycle management by factoring out explicit logging calls from
user code.

55

PAPER 1. DISTRIBUTION TRANSPARENCY FOR SUPERVISED ML

Acknowledgement
This work is supported by the ExtremeEarth1 project funded by European
Union’s Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 825258.

References
[1] R. C. Martin, Agile software development: principles, patterns, and

practices. Prentice Hall, 2002.
[2] A. Tanenbaum et al., Distributed systems: principles and paradigms.

Prentice-Hall, 2007.
[3] M. Ismail, E. Gebremeskel, T. Kakantousis, G. Berthou, and J. Dowl-

ing, “Hopsworks: Improving user experience and development on hadoop
with scalable, strongly consistent metadata,” in 2017 IEEE 37th In-
ternational Conference on Distributed Computing Systems (ICDCS),
IEEE, 2017, pp. 2525–2528.

[4] L. C. AB. “Maggy: Asynchronous distributed hyperparameter opti-
mization based on apache spark,” Logical Clocks AB. (Jan. 2020),
[Online]. Available: https://github.com/logicalclocks/maggy.

[5] M. J. Meister, “Maggy: Open-source asynchronous distributed hyper-
parameter optimization based on apache spark,” M.S. thesis, 2019.

[6] T. Kluyver, B. Ragan-Kelley, F. Pérez, et al., “Jupyter notebooks-
a publishing format for reproducible computational workflows.,” in
ELPUB, 2016, pp. 87–90.

[7] A. Y. Wang, A. Mittal, C. Brooks, and S. Oney, “How data scientists
use computational notebooks for real-time collaboration,” Proceed-
ings of the ACM on Human-Computer Interaction, vol. 3, no. CSCW,
pp. 1–30, 2019.

[8] D. Baylor, E. Breck, H.-T. Cheng, et al., “Tfx: A tensorflow-based
production-scale machine learning platform,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, ACM, 2017, pp. 1387–1395.

[9] M. Zaharia, A. Chen, A. Davidson, et al., “Accelerating the machine
learning lifecycle with mlflow.,” IEEE Data Eng. Bull., vol. 41, no. 4,
pp. 39–45, 2018.

[10] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learn-
ing: Methods, Systems, Challenges. Springer Nature, 2019.

1Project website: http://earthanalytics.eu.

56

Paper 2

Maggy: Scalable Asynchronous
Parallel Hyperparameter Search

The 1st Workshop on Distributed Machine Learning (DistributedML),
co-located with the 16th International Conference on Emerging Net-
working Experiments and Technologies (CoNEXT), 2020

57

Maggy: Scalable Asynchronous Parallel
Hyperparameter Search

Moritz Meister1, Sina Sheikholeslami2, Amir H. Payberah2,
Vladimir Vlassov2, and Jim Dowling1,2

1 Logical Clocks AB, Stockholm, Sweden
2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

Running extensive experiments is essential for building Machine
Learning (ML) models. Such experiments usually require itera-
tive execution of many trials with varying run times. In recent
years, Apache Spark has become the de-facto standard for par-
allel data processing in the industry, in which iterative processes
are implemented within the bulk-synchronous parallel (BSP) exe-
cution model. The BSP approach is also being used to parallelize
ML trials in Spark. However, the BSP task synchronization bar-
riers prevent asynchronous execution of trials, which leads to a
reduced number of trials that can be run on a given computational
budget. In this paper, we introduce Maggy, an open-source
framework based on Spark, to execute ML trials asynchronously
in parallel, with the ability to early stop poorly performing trials.
In the experiments, we compare Maggy with the BSP execution
of parallel trials in Spark and show that on random hyperparam-
eter search on a convolutional neural network for the Fashion-
MNIST dataset Maggy reduces the required time to execute a
fixed number of trials by 33% to 58%, without any loss in the
final model accuracy.

1 Introduction
Traditionally, building Machine Learning (ML) models used to be an expen-
sive and time-consuming process. However recently, Automated ML (Au-
toML) approaches have enabled data scientists to automate many aspects
of this process at the cost of increased computational resources. Never-
theless, many parts of building ML models behave as black-boxes without
gradient information of the loss available, thus AutoML has to fall back on
less efficient search algorithms to optimize them. These search algorithms

59

PAPER 2. MAGGY

are executed in experiments, where a model is trained with different con-
figurations (such as different learning rates or convolution filter sizes) to
produce a performance metric (such as any loss or accuracy metric), which
are then used by the search algorithm to propose new, potentially better
configurations. Training such a model configuration is referred to as a trial.

In Deep Learning (DL), models are ever-growing in architecture size
and complexity to beat the previous state-of-the-art. However, training
large models with massive amounts of data not only increases the training
time, but also causes a state explosion in the search space, as the per-
formance of these models becomes more sensitive to a growing number of
hyperparameters. Hyperparameters are parameters of an ML model (such
as learning rate or choices about the model’s architecture, regularization,
and optimization) that cannot be optimized by the learning algorithm itself.

These characteristics render search extremely costly, as exploding search
spaces require the evaluation of exponentially more trials. Moreover, to
make DL models more robust and explainable, a new best practice, called
ablation studies [1], [2], has evolved that is in nature similar to hyperparam-
eter search experiments. Ablation studies require many trials to evaluate
the relative contribution of different architectural and regularization com-
ponents to models’ performance. Therefore, they also suffer from the same
curse of dimensionality with increasing model size.

Current state-of-the-art solutions for hyperparameter optimization (HPO)
mainly schedule trials and update the search model asynchronously [3], [4].
Given that Apache Spark [5], [6] has become a popular data-parallel process-
ing framework, the industry is increasingly building tools to accommodate
the advanced algorithms for HPO on Spark [7], [8]. Spark implements iter-
ative processes, such as HPO, within the bulk-synchronous parallel (BSP)
execution model. However, the task synchronization barriers in BSP pre-
vent asynchronous execution of trials, which leads to a reduced number of
trials that can be run on a given computational budget. On the other hand,
actor-based systems with their inherent asynchrony, like Ray [9], have shown
to be a good fit for parallelized ML experiments. Nevertheless, history
has shown that general-purpose programming frameworks (such as Spark),
when equipped with specialized functionalities, tend to dominate specialized
frameworks, in the long run.

In this paper, we introduce Maggy, a framework for parallel ML ex-
periments that extends Spark with support for asynchronous trials, early
stopping, and global trial optimization. Maggy introduces both a pro-
gramming model for these experiments and a new driver-to-executor com-
munication protocol that allows for globally managed asynchronous trials
within the bulk-synchronous execution model (Figure 1). This protocol uses
driver-worker heartbeats to add early-stopping and asynchronous schedul-

60

PAPER 2. MAGGY

 Spark Driver

N Tasks in parallel

Trial 1

Trial 2

Trial 3

Maggy RPC Server and Controller

Task 1

Task 2

Task N

New Trial Metric Heartbeat Early Stop

Figure 1: Maggy enables driver-to-executor communication that allows
for globally managed asynchronous trials within the bulk-synchronous
model.

ing functionality within Spark tasks, as shown in Figure 1. Maggy tackles
the following challenges in modern ML model development:

1. programming support for defining, optimizing, and running parallel
ML experiments;

2. efficient use of parallel compute resources through asynchronous trials;

3. support for global directed search in high-dimensional hyperparameter
search spaces. By global optimization, we mean that the optimizer has
complete and up-to-date knowledge of all trials’ learning curves and
can make decisions on early stopping of poorly performing trials.

The experimental evaluation of Maggy shows that it can reduce the run
time of experiments with a fixed number of trials, requiring between 33%
and 57% of the time that of a BSP Spark implementation. This reduction
in time is achieved despite the added overhead of asynchronous commu-
nication, scheduling and performance sampling. The strength of Maggy
becomes apparent with early stopping, which introduces additional varia-
tion in trial run times and therefore more asynchrony.

2 Preliminary and Related Work
Although Apache Spark [5], [6] was initially developed for data-parallel pro-
cessing, nowadays it provides a unified analytics engine, including ML ap-
plications. With its high-level libraries for SQL queries on semi-structured
data, streaming data, ML, and graph processing, it became a general-
purpose framework. The fundamental data structure in Spark is resilient

61

PAPER 2. MAGGY

Spark Driver

Barrier

N Tasks in parallel
Stage 0 Stage 1

Trial 1

Trial 2

Trial 3

Wasted Compute

Update Search Model and
generate new trials

Early Stop

Task 1

Task 2

Task N

Figure 2: The bulk synchronous execution of iterations in Apache Spark
only allows new trials to be executed as tasks at the beginning of a stage.
This synchronization barrier results in wasted computation (when a trial is
stopped early, or due to straggling trials) and delayed updates to the
search model.

distributed dataset (RDD), which is a distributed collection of items [6].
The RDD provides the core abstraction in Spark, enabling data-parallel
processing and fault tolerance. However, the success and ease of use of
Spark come from the high-level APIs building transparently around this
abstraction.

A Spark job is expressed as a directed acyclic graph (DAG), capturing
the interdependencies between stages of independent tasks. Within this
computational model, we can parallelize ML experiments by mapping trials
to tasks. However, this approach has some limitations due to the synchro-
nization barrier at the end of a stage that results in the inability to early
stop a poorly performing trial during a stage and reuse the executor of the
task’s available computation resources for other trials during the rest of the
stage. The early stopping can be added to Spark by enabling the driver to
collect statistics on the performance of trials at executors periodically, and
send messages to workers to stop poorly performing trials. However, such
implementation of early stopping in Spark still wastes compute resources
by not enabling new trials to be run until the end of the stage (Figure 2).

In contrary to the data-parallelism of Spark, Ray [9] is based on an actor
concurrency model. It provides a flexible and asynchronous computational
model expressed in stateful actors and stateless tasks, which are executed
dynamically, allowing for one task or actor to spawn new actors/tasks. The
Ray asynchronous computation model makes it more suitable for iterative
workloads. Ray ships with a Python library for scalable hyperparameter
tuning, called Tune [10]. It integrates with many ML frameworks (such as
Keras, PyTorch, and XGBoost), and comes with its own implementations of

62

PAPER 2. MAGGY

popular optimization algorithms and provides support for a variety of third-
party optimization libraries and services like HyperOpt [7], [8], Bayesian
Optimization (BO) [11], and Google Vizier [12]. Due to its asynchrony,
Tune can support early stopping, as well as multi-fidelity methods, such as
HyperBand [13], BOHB [3], and ASHA [4].

HyperOpt [7], [8] is a Python library for distributed asynchronous HPO
that has similar goals to Maggy and was recently extended by a backend
supporting distribution via Apache Spark. To overcome the inefficiencies of
synchronous stages in Spark, Hyperopt maps ML trials to jobs with only
one task. These jobs can then be executed asynchronously. However, this
approach requires maintaining a thread for each scheduled job in the Spark
driver, even if the job is not running yet, to retrieve the job’s results. The
Spark driver typically runs on few computational resources and can therefore
become a bottleneck. Moreover, this design adds the overhead of starting a
new job for each trial. This architecture also does not support global early
stopping decisions. The optimizer is unaware of the current performance
of the trials being trained. Therefore, it cannot make decisions on early
stopping taking into account the knowledge about all learning curves.

Keras is a popular high-level API for TensorFlow [14] and comes with
a Python library to tune models, KerasTuner [15]. KerasTuner integrates
seamlessly with the Keras APIs and enables distributed experiments by
starting the experiment script on different machines or processes. In the
vision of Keras, KerasTuner integrates with the Google Cloud APIs to au-
tomate the process of starting worker nodes in the Google Cloud account of
a user [16]. KerasTuner provides implementations of a variation of Hyper-
Band [13] and Bayesian Optimization [11], but no explicit support for early
stopping. A unique feature of KerasTuner is the possibility of intra-trial
distribution to scale the training of single trials.

3 Hyperparameter Optimization (HPO)
In this section, we briefly recall some basic concepts from hyperparameter
optimization (HPO). While AutoML aims to automate all aspects of the ML
development process, a basic subproblem to solve is finding hyperparame-
ters to maximize the performance of a model. Hutter et al. [17] provide
a rich survey of AutoML methods, systems, and challenges, and classify
HPO methods along two dimensions: black-box HPO and multi-fidelity op-
timization. However, we believe that considering the underlying execution
systems, a third dimension should be added, which is the execution strategy.
The characteristics of methods in both the previous classes might be altered
when executed in parallel or asynchronously, and the execution strategy di-
mension introduces more opportunities for new methods. This section serves

63

PAPER 2. MAGGY

as an overview for state-of-the-art HPO extended by considerations for the
execution strategy and argues for the need for an asynchronous system to
support these.

3.1 Black-box Hyperparameter Optimization
Blackbox optimization methods are split into two subsets, model-free (undi-
rected search) and model-based (directed search) optimization. The former
method, such as grid or random search, can be run in parallel without fur-
ther coordination, as trials can be generated ahead of time. In particular,
random search is a popular baseline, since it can find configurations with
performance arbitrarily close to the optimum if it has enough computational
resources [17].

On the other hand, model-based methods, like BO [11], are inherently
sequential and require coordination to collect metrics and update the op-
timization model. BO samples the next trial to be evaluated based on
previous iterations’ results by using Bayesian posterior updates to a surro-
gate model, and encoding the prior belief over the objective function. The
surrogate model’s predictive distribution enables acquisition functions to
determine the utility of different candidate points at low cost, trading off
exploration and exploitation of the search space.

In the parallel setting, several points should be sampled based on the
same information. However, if we apply deterministic strategies, each worker
would evaluate the same configuration. A straightforward approach to de-
ploy BO in an asynchronous parallel execution strategy is to impute the
result of pending trials [18] with a constant (constant liar approach) or a
Gaussian Process (GP) [18] predictive mean (Kriging Believer).

Other approaches, such as Thompson Sampling (TS) [19] or Tree Parzen
Estimators (TPE) [7], use penalization around the locations of pending trials
to encourage diversity (PLAyBOOK algorithm) [20] or sampling through a
stochastic process, purposefully not to optimize the acquisition function
fully to incorporate diversity. These asynchrony-enabling methods have
shown to outperform their synchronous counterparts [7], [19], [20].

3.2 Multi-fidelity Optimization and Early Stopping
Multi-fidelity optimization methods rely on evaluating many trials on small
computational budgets (low fidelities) and allocating more budget to a few
promising trials. Here, for example, the budget can be the number of epochs
for training a neural network and the amount of data used for training.
Successive Halving (SHA) [21] and its successors HyperBand [13] and Asyn-
chronous Successive Halving (ASHA) [4] are three examples of multi-fidelity

64

PAPER 2. MAGGY

optimization. Both SHA and HyperBand or ASHA rely on random sam-
pling to generate new hyperparameter configurations. In contrast, Falkner
et al. [3] introduce BOHB that uses TPE [7] together with HyperBand [13]
and achieve the performance above state-of-the-art results on several ML
benchmark problems. While fidelity optimization makes the budget alloca-
tion decision before starting a trial, other approaches make early stopping
decisions at runtime. Such methods are performance curve prediction [22] or
simple heuristics like median stopping rules, as used by Google Vizier [12].
Again, these methods benefit from a central source of truth with knowledge
of all trials’ learning curves to make optimal early stopping decisions.

4 Maggy
In this section, we introduce Maggy, a system for asynchronous parallel
HPO. Below, we first describe Maggy’s programming model and then ex-
plain its implementation details. Maggy is open-source and available at
the following link1.

4.1 Programming Models
Parallel computing support for model training and HPO offers many ben-
efits, such as the ability to reduce training time and hyperparameter ex-
periments by adding more compute resources . However, parallel execution
introduces additional obtrusive code artifacts and modifications, depend-
ing on the frameworks used, which leads to infrastructure code mixed with
model training code. The programming model of Maggy can help avoid
the problem of mixing infrastructure and training logic by enabling write-
once and transparently distributed training functions. The same code, then,
can be reused in Python program on a laptop or a cluster-scale PySpark
program. The programs, written in Maggy framework, are oblivious train-
ing functions [23] as we factor out distribution-related dependencies using
best-practice programming idioms (such as functions to generate models
and data batches).

In Maggy, users define the training logic in a (higher-order) function
that returns the models performance metric (e.g., any loss or accuracy met-
ric), which is to be optimized. The function is parametrized with hyperpa-
rameters and generator functions for the model and data (Listing 1). This
function, then, is launched with a user-specified search space and optimizer
through the lagom2 API (Listing 2).

1https://github.com/logicalclocks/maggy
2Lagom is a Swedish word meaning "just the right amount".

65

PAPER 2. MAGGY

Listing 1 Example of an oblivious training function.
def train_fn(hparam1, hparam2, ..., model_fn, dataset_fn):

model = model_fn(hparam1, hparam2)
model.compile(hparam3)
train, test, val = dataset_fn()
model.fit(train, ...)
metric = model.evaluate(test, ...)
return metric["metric_to_be_optimized"]

Listing 2 Example of launching an experiment with lagom.
from maggy import experiment, Searchspace
searchspace = Searchspace(hparam1=('DOUBLE', [0,1]), ...)
experiment.lagom(train_fn, controller="BOHB", searchspace)

This way, Maggy instantiates the training function with different sets
of parameters and launches them as trials on Spark executors, without re-
quiring users to write code managing the distribution and execution of the
training logic on the workers. In return, the users will get the metrics to be
optimized from the training function, or a collection of items to be tracked
along with the experiment and specify which returned metric is to be opti-
mized. Note that the produced code is still pure Python code, and it can
be run on a cluster of machines as on a single host environment by fixing
the parameters and inputs.

Maggy currently ships with implementations of random search and BO
(TPE [7] and GP [18]) as optimizers and HyperBand, ASHA, and a median
stopping rule for early stopping. However, Maggy provides base classes for
both these entities as part of a developer API to make it extensible. Users
can implement their own optimizers or early stopping rules.

4.2 Design and Implementation
Maggy is built on top of Spark and provides an easy to use and scalable
system for ML experiments, with support for GPUs from version 3.0. In
principle, Maggy uses Spark as a resource manager with enhanced fault
tolerance support. Maggy executes experiments as launching Spark ap-
plications, where the requested number of executors (degree of parallelism)
are each blocked with one long-running task, executing trials in a loop until
the experiment finishes.

Maggy provides the aforementioned functionality through a non-blocking
RPC framework built within the Spark driver and executors (Figure 3). On
the driver-side, Maggy runs a controller thread responsible for the ex-

66

PAPER 2. MAGGY

Spark Driver

RPC Server RPC Client

Spark Task (Executor)Get Trial

Heartbeat
(logs/metric)

Shared data

lookups Trial/Stop
Controller

Ablator/Optimizer

Message
Queue

Modify

N

RPC Client

Spark Task (Executor)

Figure 3: Maggy is setup as a RPC framework within the Spark Driver
and Executors. The figure shows the entities and the flow of information
for the communication protocol and runtime behaviour.

periment’s global control, such as trial generation and early stopping. It
communicates with a RPC server thread by modifying controls in a shared
data layer and a message queue. The RPC server then responds to the
clients’ requests by performing lookups on the shared data or forwarding
the message to the controller. The shared data layer is required for the
server not to block until the controller executed the remote procedure, such
as sampling a new trial. To avoid the driver becoming a single point of
failure, a distributed file system or cloud storage can be leveraged to persist
controller state.

On the other side, each executor runs a RPC client that requests and
starts new trials, sends heartbeats with the current training metric during
training, and can early stop a trial when it receives a stop signal in response
to a heartbeat. A client polls for new trials and receives early stopping
decisions as a response to the heartbeats sent with the current training
metric. The client is stateless, hence, in case of failure, Spark can easily
restart the task and start a new client polling for trials. In scenarios of
experiments with runs for long periods of time, this results in the loss of
single trials, which are transparently rescheduled by the controller. A worker
that repeatably fails to execute trials is blacklisted from receiving future
trials.

A crucial point for collecting the current training metric for early stop-
ping is the connection between the user code and the RPC client. In order
to hook into the user code, users have two options (Listing 3), either (i)
make use of a reporter API to broadcast the metric with a heartbeat at the
end of an iteration manually, or (ii) if a high-level framework like Keras is
used, Maggy provides callbacks to be added to the training logic, doing
the same thing automatically. Approach (i) is especially useful for cases

67

PAPER 2. MAGGY

when the iteration loop is programmed by the user itself, as it is the case
in PyTorch, for example.

Listing 3 The reporter API is used to broadcast a specified metric in the
heartbeats to the controller, or via the Keras Callback interface.
(i)
from maggy import reporter
for current_epoch in range(epochs):

...
reporter.broadcast(metric=accuracy, step=current_epoch)

(ii)
from maggy.callbacks import KerasEpochEnd
callback = KerasEpochEnd(reporter, 'val_acc')
...
keras.fit(..., callbacks=[callback], ...)

5 Experiments
We evaluated Maggy by comparing its performance with synchronous par-
allel trials on Spark (equivalent to existing parallel hyperparameter tuning
frameworks on Spark, such as Databricks’ HyperOpt [24]). We trained a
three-layer convolutional neural network with a fully connected layer on
the Fashion-MNIST [25] dataset. Compared to MNIST, Fashion-MNIST
requires more time to train and is more difficult to get high accuracy on,
enabling us to measure the effect of early stopping. We apply the median
early-stopping rule [26] in Maggy to stop trials performing worse than the
median after the first four trials have completed at the same point in time
during training (in terms of stochastic gradient descent optimization steps).
In experiments on Maggy and Spark (synchronous parallel trials), we run
a fixed number of trials (N=100) with random search for hyperparameters.
We vary the number of workers from 4, to 8, to 16, to 32. The space of
hyperparameters explored using random search in both Maggy and Spark
is as shown in Listing 4.

Listing 4 Hyperparameter space for Fashion-MNIST.
sp = Searchspace(kernel=('INTEGER', [2, 8]),

pool=('INTEGER', [2, 8]), dropout=('DOUBLE', [0.01, 0.99]),
learning_rate=('DOUBLE', [0.000001, 0.99]))

The performance of hyperparameter tuning experiments is closely linked
to the sensitivity of the model being tuned to small changes in hyperparame-

68

PAPER 2. MAGGY

Table 1: Relative speedup of Maggy over the general Spark
implementation, total experiment runtime in seconds and number of early
stopped trials by Maggy.

Workers Maggy/Spark Maggy (s) Spark (s) Early-Stop
4 0.41 16284 40051 54
8 0.33 9828 29511 52
16 0.47 6486 13745 47
32 0.58 3804 6474 44

Table 2: Final accuracy after 100 trials.

Workers Maggy Accuracy Spark Accuracy
4 0.915 0.905
8 0.909 0.912
16 0.909 0.913
32 0.913 0.909

ters and the relative number of points in hyperparameter space that contains
poorly performing hyperparameter combinations. The Fashion-MNIST hy-
perparameter space used in these experiments is relatively homogeneous,
and we can see that all experiments converged to very similar accuracy.
Other networks, such as Generative Adversarial Networks are notoriously
difficult to produce reproducible experiments.

As we can see in Figure 4 and Figure 5, Maggy reduces the wallclock
time for random search hyperparameter trials by roughly half when using
the median early-stopping rule, without any loss in accuracy. In Table 1, we
can see that the median stopping rule stops, on average, half of the trials,
reducing total execution time by approximately half. In Table 2, we can
see that both Maggy and Spark converge to similar accuracy, even though
half of Maggy’s under-performing trials were stopped early.

69

PAPER 2. MAGGY

Figure 4: Asynchronous trials and the median stopping rule in Maggy
enables N=100 trials to be executed in lower wallclock time compared to
Spark without any loss in accuracy (denoted on top of the bars). Adding
more workers linearly reduces the total time required to execute all
hyperparameter trials, both for Maggy and Spark. Maggy’s reduced
execution time holds for varying number of workers (W=4, 8, 16, 32).

Figure 5: Maggy finds better configurations faster due to asynchronous
trials and the median stopping rule in Maggy. Due to shorter trials,
Maggy concludes experiments with the same number of trials in shorter
wallclock time. In Spark, trials are executed to completion (no early
stopping), yielding similar accuracy as expected, but resulting in higher
wallclock time to execute N=100 trials compared to Maggy.

70

PAPER 2. MAGGY

6 Conclusion
Spark is now a popular general purpose programming framework that is
used at all stages in machine learning pipelines, from feature engineering
to parallel hyperparameter tuning to distributed model training. However,
actor-based frameworks have shown better performance for asynchronous
ML trials, leading many developers to switch part of their pipelines to such
frameworks. In this paper, we introduced Maggy as an extension to Spark’s
synchronous processing model to allow it to run asynchronous ML trials,
enabling end-to-end state-of-the-art ML pipelines to be run fully on Spark.
Maggy provides programming support for defining, optimizing, and run-
ning parallel ML trials. Users can define their own global optimizer for
directed search in a high-dimensional hyperparameter search space, and the
Maggy runtime will manage the performance monitoring, scheduling, and
early-stopping of asynchronous trials within Spark’s synchronous execution
model.

Acknowledgement
This work is supported by the ExtremeEarth3 project funded by European
Union’s Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 825258.

References
[1] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation studies

in artificial neural networks,” arXiv preprint arXiv:1901.08644, 2019.
[2] M. Pezeshki, L. Fan, P. Brakel, A. Courville, and Y. Bengio, “Decon-

structing the ladder network architecture,” in International Confer-
ence on Machine Learning, 2016, pp. 2368–2376.

[3] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyper-
parameter optimization at scale,” arXiv preprint arXiv:1807.01774,
2018.

[4] L. Li, K. Jamieson, A. Rostamizadeh, et al., “Massively parallel hy-
perparameter tuning,” arXiv preprint arXiv:1810.05934, 2018.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et
al., “Spark: Cluster computing with working sets.,” HotCloud, vol. 10,
no. 10-10, p. 95, 2010.

3ExtremeEarth project website: http://earthanalytics.eu

71

PAPER 2. MAGGY

[6] M. Zaharia, M. Chowdhury, T. Das, et al., “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing,” in Presented as part of the 9th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 12), 2012, pp. 15–
28.

[7] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in International Conference on Machine Learn-
ing, 2013, pp. 115–123.

[8] J. Bergstra, D. Yamins, and D. Cox, Hyperopt: Distributed asyn-
chronous hyper-parameter optimization, 2012. [Online]. Available: http:
//hyperopt.github.io/hyperopt.

[9] P. Moritz et al., “Ray: A distributed framework for emerging AI appli-
cations,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 561–577.

[10] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I.
Stoica, “Tune: A research platform for distributed model selection
and training,” arXiv preprint arXiv:1807.05118, 2018.

[11] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[12] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Scul-
ley, “Google vizier: A service for black-box optimization,” in Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2017, pp. 1487–1495.

[13] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[14] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[15] T. O’Malley et al., Keras Tuner, https : / / github . com / keras -
team/keras-tuner, 2019.

[16] F. Chollet, Keras: The next five years, Feb. 2020. [Online]. Available:
https://www.youtube.com/watch?v=HBqCpWldPII.

[17] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learn-
ing: Methods, Systems, Challenges. Springer Nature, 2019.

72

PAPER 2. MAGGY

[18] D. Ginsbourger, J. Janusevskis, and R. Le Riche, “Dealing with asyn-
chronicity in parallel gaussian process based global optimization,”
2011.

[19] K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Póczos, “Par-
allelised bayesian optimisation via thompson sampling,” in Interna-
tional Conference on Artificial Intelligence and Statistics, 2018, pp. 133–
142.

[20] A. S. Alvi, B. Ru, J. Calliess, S. J. Roberts, and M. A. Osborne,
“Asynchronous batch bayesian optimisation with improved local pe-
nalisation,” arXiv preprint arXiv:1901.10452, 2019.

[21] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identifica-
tion and hyperparameter optimization,” in Artificial Intelligence and
Statistics, 2016, pp. 240–248.

[22] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Practical neural net-
work performance prediction for early stopping,” arXiv preprint
arXiv:1705.10823, vol. 2, no. 3, p. 6, 2017.

[23] M. Meister, S. Sheikholeslami, R. Andersson, A. A. Ormenisan, and J.
Dowling, “Towards distribution transparency for supervised ml with
oblivious training functions,” in Workshop on MLOps Systems, 2020.

[24] Databricks, Scaling hyperopt to tune machine learning models in python,
Oct. 2019. [Online]. Available: https : / / databricks . com / blog /
2019/10/29/scaling- hyperopt- to- tune- machine- learning-
models-in-python.html.

[25] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel im-
age dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[26] L. Prechelt, “Early stopping-but when?” In Neural Networks: Tricks
of the trade, Springer, 1998, pp. 55–69.

73

Paper 3

AutoAblation: Automated Parallel
Ablation Studies for Deep Learning

The 1st Workshop on Machine Learning and Systems (EuroMLSys),
co-located with the 16th European Conference on Computer Systems
(EuroSys), 2021

75

AutoAblation: Automated Parallel
Ablation Studies for Deep Learning

Sina Sheikholeslami1, Moritz Meister2, Tianze Wang1, Amir H. Payberah1,
Vladimir Vlassov1, and Jim Dowling1,2

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Logical Clocks AB, Stockholm, Sweden

Abstract

Ablation studies provide insights into the relative contribution of
different architectural and regularization components to machine
learning models’ performance. In this paper, we introduce Au-
toAblation, a new framework for the design and parallel execu-
tion of ablation experiments. AutoAblation provides a declar-
ative approach to defining ablation experiments on model archi-
tectures and training datasets, and enables the parallel execution
of ablation trials. This reduces the execution time and allows
more comprehensive experiments by exploiting larger amounts of
computational resources. We show that AutoAblation can pro-
vide near-linear scalability by performing an ablation study on the
modules of the Inception-v3 network trained on the TenGeoPSAR
dataset.

1 Introduction
Inspired by how the mammalian brain works, Deep Neural Networks (DNNs)
have been at the forefront of recent breakthroughs in Artificial Intelligence.
Since the early 19th century, a surgical procedure called an ablation study
has been developed to understand the role of different components of the
brain [1]. An ablation study involves removing a specific part of the brain
of a mammal, and observing any resulting changes in its behavior. Given
our limited understanding of brain function, this black-box approach has
helped identify regions in the neocortex that are specialized for controlling
specific behaviours and the relative contribution of brain regions to global
function.

Similar to brains, we lack models to understand the function of Deep
Learning (DL) systems at both the macro and micro levels. As such, black-
box experiments that modify model architectures while observing system
performance offer an approach to help improve our understanding of a DL

77

PAPER 3. AUTOABLATION

rooms

3

1

2

...

2

age

15

2

8

...

3

price

250,000

120,000

200,000

...

180,000

Max-Pool Convolution DenseMax-Pool Convolution Max-Pool Dense

rooms

3

1

2

...

2

area

90

24

51

...

60

age

15

2

8

...

3

price

250,000

120,000

200,000

...

180,000

Figure 1: Example trial configurations for model ablation (up) and feature
ablation (bottom). Yellow highlighting indicates a “component” that is
removed for the trial.
system. An ablation study in DL involves measuring the performance of a
network after removing one or more of its components to help understand
the relative contribution of the ablated components to overall performance
[2]. Dataset features and model components (e.g., layers) are notable ex-
amples of ablatable components, but any design choice or module of the
system can be considered in an ablation study.

In this setting, we consider the execution of an ablation study on a given
DL model or dataset as a single experiment consisting of several trials, where
each trial involves removing one or more model or dataset building blocks,
e.g., layers or features. We distinguish two kinds of ablation trials, namely,
model ablation trials and feature ablation trials, depending on what kind of
block is ablated in the trial: model components (e.g., layers or modules), or
dataset features, respectively. Each model ablation trial involves training
and evaluating a model with one or more of its components (e.g., layers)
removed (Figure 1, (up)). Similarly, a feature ablation trial involves training
and evaluating the model using a different subset of features in the dataset
(Figure 1, (bottom)).

Over the years, many Machine Learning (ML) papers have included ab-
lation studies [3]–[7]. Moreover, following the recent trend towards explain-
able and interpretable ML systems, several recent works [8], [9], discuss how
ablation studies can lead to more explainable ML models. However, it can
be observed that a significant part of the ML research community still re-
gards performing ablation studies to be unnecessary, and when researchers
publish or propose new model architectures or training procedures, they
may attribute the resulting gains only to the changes they have made to a
base model architecture or training procedure, without performing any ab-
lation studies that would allow to identify and quantify the actual impact
of each of these proposed changes [8].

Based on our observations, two main reasons for this oversight are: (i)

78

PAPER 3. AUTOABLATION

performing ablation studies requires maintaining redundant copies of code
that each correspond to a different configuration of the model or the dataset,
and (ii) evaluating these different configurations requires extra time and
compute resources. Looking closer at these challenges, however, reveals triv-
ial yet interesting characteristics of ablation studies. When talking about
the existence of redundant copies of code for ablation trials, we can observe
that these copies are almost identical, except for the part related to the
specific ablation trial. Moreover, executing a set of ablation trials is an
embarrassingly parallel task.

In this work, we exploit the above characteristics to design and develop
a framework to overcome the aforementioned challenges. Our framework,
AutoAblation, is based on the concept of the distribution oblivious train-
ing function [10], in which we decouple model creation and dataset creation
functions from the training function. This decoupling allows us to (i) elim-
inate the need for maintaining redundant copies of code for ablation trials,
and (ii) provide distribution transparency for ML developers so the code
that is developed for execution of ablation trials on a single host can easily
be executed in parallel on a cluster of machines. This practice has re-
cently enjoyed increased adoption in the community, as can be seen in the
programming model of libraries such as PyTorch Lightning [11] and Keras
Tuner [12].

With AutoAblation, we introduce a novel way to define and paral-
lelize the execution of ablation studies for (i) DL model architectures, and
(ii) training datasets. By decoupling model creation and dataset creation
from the training function, we have come up with a simple and declara-
tive Application Programming Interface (API) that eliminates the need for
maintaining redundant copies of code for ablation studies. Furthermore,
our framework enables parallel execution of ablation trials without requir-
ing the developers to modify their code, which leads to shorter study times
and better resource utilization. To the best of our knowledge, this is the first
framework that provides support for the specification and parallel execution
of ablation studies for DL. We demonstrate the usability and scalability of
AutoAblation through three common scenarios in which ablation studies
may be performed.

2 Preliminaries

In this section we provide a formal definition of ablation studies in DL, and
describe the parallel execution of trials.

79

PAPER 3. AUTOABLATION

2.1 A Formal Definition of Ablation Study
Given a training dataset D and a model M , in training of the model, we aim
to optimize its parameters with regards to an objective function (e.g., Mean
Squared Error or Binary Cross-Entropy) using an iterative optimization
algorithm (e.g., Stochastic Gradient Descent). In practice, developing a
performant DL model requires many design decisions and trying out several
configurations C. The goal of an ablation study is to investigate the relative
contribution of each of these configurations to the performance of the model.
A configuration can be a dataset configuration CD or a model configuration
CM .

The dataset configuration describes what features of a given dataset we
need to exclude for training. For a dataset X with n features, CD(X, {x})
indicates that the features in {x} should be excluded during training the
models. For example, CD(X, {x1, x3, x4}) means to skip features 1, 3, and
4, and use the rest of the features to train the models. Similarly, the model
configuration illustrates the architecture of a model. To be more precise,
for a given model M with k components, CM (M, {m}) means to exclude
the listed components in {m} during training M . A component can be a
layer, a set of neurons, a filter, and so on. For example, if M is a Con-
volutional Neural Network (CNN) with two convolution layers (c1 and c2),
one pooling layer in between (p1), and one dense layer at the end (d1),
then CM (M, {c1, p1}) means to remove the first convolution layer and the
pooling layer from M and train the model with the rest of component, i.e.,
{c2, d1}.

We define a study S as a set of either dataset configurations, SD = {CD},
or model configurations, SM = {CM }. For example, SM = {CM1 , CM2 , · · · , CMz

}
means to train the model M with z different model configurations, such that
in training with configuration CMi , we only consider the components of the
model M , which are not listed in that configuration. We call the execution
of an study as an experiment, which consists of several trials, where each
trial corresponds to a configuration. Given the set of components that are
to be ablated in an ablation experiment, an ablation policy specifies the
trials that constitute the experiment. An ablator, in turn, is an implemen-
tation of an ablation policy that materializes the trials of the experiment.
A simple policy could be to remove (exclude) one component per each trial.
This is perhaps the most common form of performing ablation studies, and
we refer to it as Leave-One-Component-Out (LOCO) ablation.

2.2 Parallel Execution of Trials
Over the last few years, several ML and DL frameworks and libraries have
been introduced, such as TensorFlow [13], PyTorch [14], and Keras [15]. To
make model ablation possible, the underlying DL framework should provide

80

PAPER 3. AUTOABLATION

ways for exporting configuration representations of the models, and ways to
distinguish different components. All of the above mentioned frameworks
fulfill this requirement, e.g., Keras enables developers to set the name pa-
rameter for layers of a DNN, and export the configuration representation of
a model in various formats, such as JSON.

The above mentioned frameworks, however, lack support for parallel and
distributed execution of DL experiments consisting of independent trials.
For example, TensorFlow and PyTorch provide distributed training capa-
bilities for single models, but practitioners are often left building their own
solutions to parallelize their experiments. Therefore, efforts have been made
either to develop new frameworks for distributing DL workloads (e.g., Ray
[16]), or to use existing distributed processing engines for DL workloads.

Among big data processing frameworks, Apache Spark [17] has been the
target of several such efforts [18], as it has become an industry standard
for data processing and engineering tasks. TensorFlowOnSpark [19] runs
distributed training of a single model with TensorFlow within a Spark job,
where each task within this job will serve as a worker process. However,
mapping each trial in an experiment to a Spark task results in poor resource
utilization, as running iterative jobs on Spark follows the Bulk Synchronous
Parallel (BSP) execution model. Stages in Spark introduce task synchro-
nization barriers, and for jobs to proceed to a new stage, all tasks (trials)
from the previous stage have to be completed. In case of ablation studies,
some trials may take significantly longer time to train due to their configu-
rations, i.e., their specific model architecture, or the dataset subset. Hence,
asynchronous execution of trials on an Apache Spark cluster would be highly
desirable.

Maggy [20] is a framework for asynchronous execution of trials on
Apache Spark clusters. Maggy launches a single Spark job for the whole
experiment, and on each Spark executor, one long running task will be run
to execute the trials. Once the evaluation of a trial is finished (or stopped)
on an executor, the same task on the executor will be reinitialized with a
new trial configuration. A Controller thread, running on the driver side,
is responsible for generating new trial configurations. Depending on the
nature of the experiment, the Controller can include an optimizer (for
hyperparameter tuning experiments), or an ablator (for ablation studies).
Currently, Maggy supports asynchronous, parallel execution of hyperpa-
rameter tuning experiments [20], and with AutoAblation we extend it to
also support ablation study experiments.

Through a communication model based on non-blocking Remote Pro-
cedure Calls (RPC), once the job is launched (or an executor finishes an
assigned trial), the executors can communicate with the driver and poll the
controller for new trials independent of other executors. This removes the

81

PAPER 3. AUTOABLATION

barrier (synchronization step) imposed by the BSP execution model, lead-
ing to increased resource utilization as well as reduced total run-time of
experiments.

3 AutoAblation
Currently, AutoAblation supports model ablation and feature ablation
of DNNs. Model ablation is possible in form of individual layers, groups
of layers, and modules (e.g., an Inception module), and feature ablation is
possible in form of individual features or groups of features. To address
the two challenges of (i) redundant code maintenance, and (ii) efficient
parallel execution of ablation trials, we exploit the fact that the training
logic remains largely unchanged between different trials. When we want to
investigate the contribution of different components of a DL model to its
overall performance, we have to construct different variants of the model
architecture and apply the same training logic on these variants, using the
same training data. Similarly, if we are interested in the importance of each
feature of our training dataset, we use different combinations of the features
to train the same model, using the same training logic.

Following the above observations, the programming model of AutoAb-
lation is based on the decoupling of the model creation and dataset cre-
ation from the training logic. In other words, instead of having model
creation, dataset creation, and training logic in a single block of code, the
user wraps the training code in a function that is parameterized by dataset
creation and model creation functions. This decoupling and parameteriza-
tion allows the framework to automatically generate and replace parts of
the logic that are specific to each trial. Performing an ablation experiment
in AutoAblation consists of three steps1: (i) defining the training com-
ponents (including model creation and dataset creation), (ii) defining the
ablation study, and (iii) executing the ablation trials in parallel. We will
explain this workflow, as shown in Figure 2, in the following subsections.

3.1 Defining the Training Components
The first step is to define the actual training loop. This step is always part of
the ML process, irrespective of whether an ablation study will be performed
or not. The important thing here, however, is that the user has to decouple
the model creation and the dataset creation from the training function.
In most cases, this is equivalent to moving the code blocks responsible for
the model creation and the dataset creation to their own functions, e.g.,

1See https://maggy.readthedocs.io/ for the API documentation.

82

PAPER 3. AUTOABLATION

Define Training Components

Model Creation

Training Logic

Dataset Creation

Define the Ablation Study Launch the Experiment

Figure 2: Workflow of an ablation experiment.

create_model() and create_dataset(), and passing them as arguments
to the training function. A skeleton code for the first step is shown in Listing
1.

Model Creation. Here, the user has to wrap the model creation code
in a Python function that we refer to as the base model function, which
receives trial-specific parameters (e.g., layer identifiers) and returns a train-
able model that can be used in the training function.

Dataset Creation. Similar to model creation, the process of creating the
train/test/validation sets that will be used in the train/test/validation loops
should be wrapped in its own function. The user can implement their own
function for creating these sets or use default dataset creation functions
shipped with AutoAblation.

Training Function. The training function is the actual pure Python code
block that will be executed either on a single host or in parallel on a cluster
of workers, and contains the code for training a DL model using a train-
ing dataset. In a typical implementation of a DL application, the whole
process of preparing the train/test/validation sets, model architecture def-
inition, and model training is implemented in a monolithic style; but in
our programming model, as the user has already implemented the model
creation and the dataset creation functions in the previous sub-steps, the
model function and the dataset function are passed as arguments to the
training function, and will instantiate the model and the dataset(s) once
called.

3.2 Defining the Ablation Study
The next step is to define the ablation study by specifying the model config-
uration and dataset configuration (SD and SM , as defined in Section 2.1).
To this end, the user has to create an AblationStudy instance and initialize
it with the default model creation and dataset creation functions defined in

83

PAPER 3. AUTOABLATION

Listing 1 Defining the training components.
define the model creation logic
def base_model(trial_params):

create the model ...
return model

define the dataset creation logic
def base_dataset(trial_params):

create the dataset ...
return dataset

define the training logic, parametrized by the model and dataset
def train(model_func, dataset_func):

model = model_func()
data = dataset_func()
metric = model.fit(data)
return metric

Listing 2 Defining the ablation study.
define the ablation study
study = AblationStudy()

study.model.set_base_model_generator(base_model)
study.set_dataset_generator(base_dataset)

study.features.include('feature_name')
study.model.layers.include('layer_name')
study.model.add_module('module_name')

launch the experiment
experiment.launch(train, study)

the previous step. After this, the user should specify which configurations
they want to include in the study. Currently, AutoAblation API pro-
vides methods for defining configurations for dataset features, model layers,
layer groups, modules, and custom models. Example usage of the API for
defining an ablation study is shown in Listing 2.

3.3 Launching the Experiment
The final step is to invoke an API call that mainly receives the training
function and the study specification, and initiates the execution of the trials
through Maggy, either sequentially on a single host or in parallel on a
cluster of nodes.

4 Implementation
AutoAblation runs on top of Maggy, an open-source Python-based
framework for asynchronous execution of ML trials on top of Apache Spark.
The experiment is launched as a Spark application that generates the trials

84

PAPER 3. AUTOABLATION

of the experiment, and Maggy distributes the trials on the set of available
worker nodes (executors). Below, we explain how AutoAblation gener-
ates trials based on the ablation study specification defined in the second
step of the workflow in Section 3.

4.1 Implementing the LOCO Ablator
As discussed in Section 2.1, an ablator is an implementation of an ablation
policy. In AutoAblation, ablators are implemented as Python classes.
The Controller thread in the Spark job creates an instance of an ablator
class and uses it to generate Trial objects that contain the model creation
and dataset creation functions specific to each trial. To execute a trial,
an executor requests a new trial configuration from the Controller. If
there is a trial to be evaluated, the executor will be sent a Trial object.
The executor then de-serializes the object and unpacks its contents, and
then passes them as arguments to the training function, and executes the
training function.

The LOCO ablator uses the dataset creation and model creation func-
tions to generate Trial objects that are then shipped to the executors as
they request new trial configurations. Given an AblationStudy instance
that contains different configurations, in order to create customized mod-
els and datasets for each trial, an ablator must modify the base model or
dataset by removing these components. LOCO does this through pars-
ing and modifying “configuration representations” of the components. For
datasets, this is equivalent to the dataset schema (which can come in dif-
ferent formats). For models, many DL frameworks provide ways for saving
or exporting model configurations, e.g., through JSON files (as in Keras)
or serializable dictionaries (as in PyTorch). Hence, an ablator essentially
implements the process of parsing and modifying these configuration repre-
sentations and generating trials according to an ablation policy.

Given the schema of the base dataset, the LOCO ablator modifies
the base schema to create a new schema for each feature ablation trial,
and generates its corresponding create_dataset function. To generate
create_model functions specific to each trial, the LOCO ablator uses the
base model function (as described in Section 3.1) to export the configura-
tion representation of the base model, and then parses it to find and select
model components defined in the AblationStudy instance of the experi-
ment. It then modifies the configuration representations and generates new
create_model functions for each trial.

Input or output shape changes that may result from removal of compo-
nents are either handled by the underlying framework (e.g., when removing
layers of a model developed with Keras Sequential API), or require explicit

85

PAPER 3. AUTOABLATION

handling in the implementation of the ablator (e.g., by using a randomly
initialized tensor as the input of one forward pass of the modified model, to
infer the correct shapes). However, if a trial cannot be automatically gen-
erated, the user still has the option to create a custom trial with their own
model creation and dataset creation functions, and add it to the experiment.
Finally, the LOCO ablator creates the corresponding Trial objects, and
populates the buffer of trials that the executors can poll as the experiment
is launched.

4.2 Parallel Execution of Trials
To execute different trials of an experiment, each Spark executor needs to
have the training function that is parametrized by the create_model and
create_dataset function objects. The training function is supposed to
remain the same through all trials, so it will be sent to the executors as
the experiment is launched. The two parameters of the training function,
will be provided through the Trial objects created by the LOCO ablator.
The executors will then register with the Maggy driver, and start polling
the server for these objects. Depending on the ablation policy, a number
of initial trials will be generated on the driver side; in the case of LOCO,
since the number of trials can be determined from the components included
in the ablation study, the ablator will generate all trials and put them in
a buffer, which will be queried by the Controller every time an executor
requests a new trial configuration. It should be noted that the Spark job is
started and managed by Maggy, and the start-up only takes a few seconds,
which is negligible compared to the actual time it takes to train the model
variants.

5 Evaluation
In this Section, we demonstrate three common scenarios, in which ablation
studies can be performed, and show how we can define and execute such
studies with AutoAblation2. Below, we first evaluate the performance
of AutoAblation in two different experiments: (i) feature ablation and
(ii) model ablation, and then we show how it performs in various levels of
parallelization.

EXP1: Feature Ablation of the Titanic Dataset. In this experiment,
we perform feature ablation on a customized version of the Titanic dataset3.

2The reproducible experiments: https://github.com/ssheikholeslami/ablation-paper-
experiments

3https://www.kaggle.com/c/titanic/data

86

PAPER 3. AUTOABLATION

There are six features in the dataset in addition to the label, so we will have
seven trials (including one base trial that contains all the features). The
model we use is a simple Keras Sequential model with two hidden Dense
layers. We keep 20% of the data as the test set and train on the rest for 10
epochs. Listing 3 shows the code required to define this experiment.

Listing 3 Defining the feature ablation experiment.
from maggy.ablation import AblationStudy
study = AblationStudy('titanic_train_dataset', label_name='survived')
list_of_features = ['pclass', 'fare', 'sibsp', 'sex', 'parch', 'age']
study.features.include(list_of_features)

After repeating the experiment five times, we can rank the features in
terms of their average effect on the test accuracy, as shown in Table 1. For
example, we observe that training the model with all the features (None)
results in the worst test accuracy, while removing the fare feature from the
training dataset leads to the best performance.

Table 1: Average accuracy on the test set resulting from excluding each
feature from the training set.

Excluded Feature Test Accuracy
None (base trial) 0.583

pclass 0.596
sex 0.609

sibsp 0.616
age 0.667

parch 0.672
fare 0.695

EXP2: Model Ablation of a Keras Sequential Model. In this exper-
iment, we train a CNN to classify handwritten digits of the MNIST dataset
[21]. The network has two Conv2D layers, followed by one MaxPooling2D
layer, one Dropout layer, a Flatten layer, one Dense layer, another Dropout
layer, and one Dense output layer. Our target is to investigate the relative
contribution of the second Conv2D layer, the Dense layer, and the first and
second Dropout layers to the performance of the model. The study can be
defined using the code shown in Listing 4. After repeating the experiment
five times, we can rank the selected layers in terms of their average effect on
the test accuracy, as shown in Table 2. We can see that removing the second
Conv2D layer has the worst effect on the test accuracy, while removing the
Dropout layers results in a better performance than the performance of the
base model.

EXP3: Model Ablation of Inception-v3. With this experiment, we

87

PAPER 3. AUTOABLATION

Listing 4 Defining the CNN model ablation experiment.
from maggy.ablation import AblationStudy
study = AblationStudy("mnist", 1, "number",)
study.model.layers.include('second_conv',

'first_dropout', 'dense_layer', 'second_dropout')

Table 2: Average accuracy on the test set resulting from excluding layers
of interest from the base model.

Excluded Layer Test Accuracy
second_conv 0.913
dense_layer 0.954

None (base trial) 0.969
second_dropout 0.982

first_dropout 0.988

demonstrate the near-linear scalability achieved by parallel execution of
ablation trials with AutoAblation. We perform an ablation study on
seven modules of the Inception-v3 network [22] in a transfer learning task
on a subset of the TenGeoPSAR dataset [23]. This subset contains 5000
Synthetic Aperture Radar (SAR) images. We split the dataset into train
(3200 images), validation (800 images), and test (1000 images) sets. The
images are labeled with one of 10 classes, each representing a geophysical
phenomena.

We load the network using Keras Applications API with pre-trained
ImageNet [24] weights, and replace its output layer to suit our 10-class clas-
sification task. The Inception-v3 network consists of 11 blocks also known
as “inception modules”, and we are interested to know how each of the first
seven modules affect the performance of the network (measured by the ac-
curacy on the test set). Since this is a predefined network, we first compile
it to find out about the names of the layers, and identify the entrance and
end point of each module either by plotting the architecture or observing
the model.summary() output information in Keras. Once we identify the
layers, defining the ablation study can be done with the code shown in
Listing 5.

Listing 5 Defining the Inception-v3 module ablation experiment.
from maggy.ablation import AblationStudy
study = AblationStudy("TenGeoPSARwv", 1, "type",)
study.model.add_module('max_pooling2d_1', 'mixed0')
study.model.add_module('mixed0', 'mixed1')
study.model.add_module('mixed1', 'mixed2')
...
study.model.add_module('mixed5', 'mixed6')

Each trial consists of 40 epochs of training, and we run the experiment
in three settings: (i) a single executor (sequential, no parallelization), (ii)

88

PAPER 3. AUTOABLATION

Figure 3: AutoAblation provides near-linear scalability by parallelizing
the execution of ablation trials.

two executors, and (iii) four executors. The total run-time for each of these
settings is reported in Figure 3. We take the run-time of the sequential
run as a baseline to approximate linear scalability; however, we should keep
in mind that the ablation trials differ in their run-time since their model
architectures are different from one another. We can conclude from Figure 3
that AutoAblation provides near-linear scalability by parallelizing the
execution of ablation trials.

6 Related Work
Recently there have been many efforts to build frameworks, libraries, and
tools to inquire insights regarding the performance of DL models or the
effect of different dataset configurations in their performance. Many of such
efforts address the problem of Interpretability and Explainability of ML/DL
models4. Libraries such as LIME [25], SHAP [26], and TensorFlow’s What-If
Tool [27] provide extensive tools and visualizations for explaining the be-
haviour and outputs of ML/DL models through post-hoc analysis. DeepBase
[28] is a system for deep neural inspection that provides a declarative API
for defining hypothesis functions and then evaluates those hypotheses over
a sequence of inputs. DeepBase is similar to AutoAblation as it shares
a design requirement to reduce the amount of effort for performing model
inspections, but with AutoAblation the same code can be used for hyper-
parameter tuning, distributed training, and other types of DL experiments
[10]. LOFO-Importance [29] is a library that provides Leave-One-Feature-
Out importance for datasets used to train models, by excluding one feature
out of the training set at a time, and retraining the model on that subset.
However, it does not provide support for model ablation experiments.

4A list of related open-source projects can be found in:
https://github.com/EthicalML/awesome-production-machine-learning

89

PAPER 3. AUTOABLATION

7 Conclusion and Future Work
In this paper, we introduced AutoAblation, a new framework for the de-
sign and parallel execution of ablation studies of deep learning models. We
formulated an ablation study as an experiment that consists of several trials,
where each trial represents a specific model architecture or dataset schema.
We also presented a new programming model for designing an experiment
that is based on the decoupling of model creation and dataset creation from
the training function. We introduced the concept of the ablation policy
that specifies what should be the trials that make up an ablation experi-
ment, implemented in form of an ablator. Moreover, we showed how we
leverage parallel execution of trials to speed up the total study time and in-
crease resource utilization, through our Python-based execution framework
called Maggy. Through the experiments, we showed that AutoAbla-
tion provides near-linear scalability. Our next step would be to develop a
generalized approach for handling shape mismatch issues, and to support
automatic generation of more complex ablation trials and policies, e.g., cases
in which removal of a layer requires other changes in the components of a
model. As AutoAblation gets picked up by more users, we will use their
feedback to provide support for more common ablation scenarios.

Acknowledgement
This work is supported by the ExtremeEarth5 project funded by European
Union’s Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 825258. The authors would like to thank Farzad Nozarian
and Desta Hagos for their detailed feedback on the draft of this paper.

References
[1] N. Carlson et al., Psychology: the Science of Behavior. Pearson, 2009.
[2] S. Sheikholeslami, “Ablation programming for machine learning,” M.S.

thesis, 2019.
[3] E. Horvitz et al., “Learning and reasoning about interruption,” in Pro-

ceedings of the 5th International Conference on Multimodal Interfaces,
ACM, 2003, pp. 20–27.

[4] M. Richardson et al., “Beyond pagerank: Machine learning for static
ranking,” in Proceedings of the 15th International Conference on World
Wide Web, ACM, 2006, pp. 707–715.

5ExtremeEarth project website: http://earthanalytics.eu .

90

PAPER 3. AUTOABLATION

[5] R. Girshick et al., “Rich feature hierarchies for accurate object de-
tection and semantic segmentation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014, pp. 580–
587.

[6] M. Hessel et al., “Rainbow: Combining improvements in deep rein-
forcement learning,” in 33 AAAI Conference on Artificial Intelligence,
2018.

[7] D. Berthelot et al., “Mixmatch: A holistic approach to semi-supervised
learning,” arXiv preprint arXiv:1905.02249, 2019.

[8] Z. C. Lipton and J. Steinhardt, “Troubling trends in machine learning
scholarship,” arXiv preprint arXiv:1807.03341, 2018.

[9] R. Meyes et al., “Ablation studies in artificial neural networks,” arXiv
preprint arXiv:1901.08644, 2019.

[10] M. Meister et al., “Towards distribution transparency for supervised
ml with oblivious training functions,” in Workshop on MLOps Sys-
tems, 2020.

[11] W. A. Falcon et al., “Pytorch Lightning,” GitHub.
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3, 2019.

[12] T. O’Malley et al., Keras Tuner, https : / / github . com / keras -
team/keras-tuner, 2019.

[13] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 265–283.

[14] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in Neural Information Processing
Systems, vol. 32, pp. 8026–8037, 2019.

[15] F. Chollet et al., Keras, 2015.
[16] P. Moritz et al., “Ray: A distributed framework for emerging AI appli-

cations,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 561–577.

[17] M. Zaharia et al., “Spark: Cluster computing with working sets,” Hot-
Cloud, vol. 10, no. 10-10, p. 95, 2010.

[18] B. Chambers and M. Zaharia, Spark: The Definitive Guide: Big Data
Processing Made Simple. O’Reilly Media, Inc., 2018.

[19] L. Yang et al., Open sourcing tensorflowonspark: Distributed deep
learning on big-data clusters, 2017.

91

PAPER 3. AUTOABLATION

[20] M. Meister et al., “Maggy: Scalable asynchronous parallel hyperpa-
rameter search,” in Workshop on Distributed Machine Learning, 2020,
pp. 28–33.

[21] Y. LeCun, The MNIST database of handwritten digits,
http://yann.lecun.com/exdb/mnist/, 1998.

[22] C. Szegedy et al., “Rethinking the inception architecture for com-
puter vision,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2818–2826.

[23] C. Wang et al., “A labelled ocean sar imagery dataset of ten geophysi-
cal phenomena from sentinel-1 wave mode,” Geoscience Data Journal,
vol. 6, no. 2, pp. 105–115, 2019.

[24] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion, IEEE, 2009, pp. 248–255.

[25] M. T. Ribeiro et al., “"why should i trust you?": Explaining the pre-
dictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2016, pp. 1135–1144.

[26] S. M. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” Advances in Neural Information Processing Systems, vol. 30,
pp. 4765–4774, 2017.

[27] J. Wexler et al., “The what-if tool: Interactive probing of machine
learning models,” arXiv preprint arXiv:1907.04135, 2019.

[28] T. Sellam et al., “Deepbase: Deep inspection of neural networks,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 1117–1134.

[29] A. Erdem et al., Leave one feature out importance, https://github.
com/aerdem4/lofo-importance, 2019.

92

Paper 4

The Impact of Importance-aware
Dataset Partitioning on Data-parallel
Training of Deep Neural Networks

The 23rd IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), 2023

93

The Impact of Importance-aware Dataset
Partitioning on Data-parallel Training of

Deep Neural Networks

Sina Sheikholeslami1, Amir H. Payberah1,
Tianze Wang1, Jim Dowling1,2, and Vladimir Vlassov1

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Hopsworks AB, Stockholm, Sweden

Abstract

Deep neural networks used for computer vision tasks are typically
trained on datasets consisting of thousands of images, called ex-
amples. Recent studies have shown that examples in a dataset
are not of equal importance for model training and can be cat-
egorized based on quantifiable measures reflecting a notion of
“hardness” or “importance”. In this work, we conduct an em-
pirical study of the impact of importance-aware partitioning of
the dataset examples across workers on the performance of data-
parallel training of deep neural networks. Our experiments with
CIFAR-10 and CIFAR-100 image datasets show that data-parallel
training with importance-aware partitioning can perform better
than vanilla data-parallel training, which is oblivious to the im-
portance of examples. More specifically, the proper choice of the
importance measure, partitioning heuristic, and the number of in-
tervals for dataset repartitioning can improve the best accuracy of
the model trained for a fixed number of epochs. We conclude that
the parameters related to importance-aware data-parallel train-
ing, including the importance measure, number of warmup train-
ing epochs, and others defined in the paper, may be considered
as hyperparameters of data-parallel model training.

95

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

1 Introduction
Data-parallel training (DPT) is the current best practice for training deep
neural networks (DNNs) on large datasets over several computing nodes
(a.k.a. workers) [1]. In DPT, the DNN (model) is replicated among the
workers, and the training dataset is partitioned and distributed uniformly
among them. DPT is an iterative process where in each iteration, each
worker trains its model replica on its dataset partition for one epoch. After
each iteration, the parameters or gradients of the worker models are aggre-
gated and updated. Then, all workers continue the training using the same
updated model replicas. This “vanilla” DPT scheme is shown in Figure 1.

The dataset partitions in vanilla DPT are constructed by random parti-
tioning, i.e., randomly assigning training examples to each partition. How-
ever, it is known that not all examples within a training dataset are of equal
importance for training DNNs [2]–[5] meaning that different examples con-
tribute differently to the training process and the performance of the trained
model (e.g., its prediction accuracy). Prior works have used example im-
portance to improve DNN training schemes, mainly aiming at reducing the
total training time or increasing the performance of the trained models. For
example, in dataset subset search [3], the goal is to find subset(s) of a given
training dataset that can be used to train equally good or more performant
models compared to the models trained on the initial dataset. Example
importance has also been used for developing more effective sampling algo-
rithms for stochastic gradient descent (SGD) [5], or in active learning for
choosing the best examples to label [4].
Contributions. All the above-mentioned solutions are mainly designed for
non-distributed model training. In this paper, we study different heuristics
to assign examples, based on their importance, to workers in a distributed
environment and in DPT. In particular, the contributions of this work are
as follows.

• We introduce importance-aware DPT, which replaces the random par-
titioning of the dataset across workers in vanilla DPT, with heuristics
that partition the dataset based on some pre-determined notion of
example importance, e.g., the average loss value of each example over
a number of training epochs.

• We study the effects of the hyperparameters of importance-aware
DPT, including different (i) example importance measures and met-
rics, (ii) partitioning heuristics, and (iii) partitioning intervals, on the
quality of the training scheme. Our experiments for image classifica-
tion tasks on CIFAR-10 and CIFAR-100 datasets demonstrate that
importance-aware DPT can outperform vanilla DPT in terms of the

96

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

Parameter Server

W3W2W1W0

?w

?w

?w

?w

Figure 1: The vanilla DPT scheme with four workers and one parameter
server. At each epoch, each worker gets a random partition of the dataset,
and all the workers are assigned the same model replica. After one epoch
of training, the workers send their local gradients or model parameters to
the parameter server. The parameter server performs either gradient
aggregation or model aggregation and sends back the new gradients or
parameters to the workers.

best test accuracy achieved by models.

The remainder of this paper is structured as follows. In Section 2, we
provide the necessary background, including an overview of DPT and a re-
view of some related work. In Section 3, we present importance-aware DPT
and discuss how it differs from vanilla DPT, which is importance-oblivious.
In Section 4, we discuss our prototype implementation of importance-aware
DPT in PyTorch. In Section 5, we present the results of our experimental
evaluation of importance-aware DPT. Finally, in Section 6, we give our con-
clusions and discuss the current limitations of our importance-aware DPT
prototype and further research directions.

2 Background and Related Work
Our work presented in this paper lies in the intersection of data-parallel
DNN training and prior work that studies the difference of examples within
a dataset in terms of their importance for model training. In this section,
we give a brief overview of the DPT of DNNs and some related work on
example importance.

97

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

2.1 DNN Data-Parallel Training (DPT)
Given a training dataset D consisting of training examples e ∈ D, the aim
of training the model M is to optimize model parameters with regards to
a cost function, e.g., Mean Squared Error or Binary Cross-Entropy, using
an iterative optimization algorithm, e.g., Stochastic Gradient Descent. A
training dataset is typically made up of examples of a specific type, such
as images, structured data, or sentences. During each epoch of training,
batches of examples are passed through the model, and model parameters
are optimized using the iterative optimization algorithm. To scale out the
training process, one can use multiple processing nodes, a.k.a. workers, and
partition the DNN (for model-parallelism) or the dataset (for DPT) and
assign them to the workers to enable parallel training. For our purposes,
we define a worker w ∈ W as a process within a processing node that is
allocated exactly one GPU, i.e., each worker corresponds to exactly one
GPU in our cluster of processing nodes.

In a typical most common DPT scheme, which we refer to as vanilla
DPT, the DNN is replicated across the workers. At the beginning of each
epoch, the dataset is partitioned uniformly at random into disjoint subsets
p ∈ P , such that worker wi is allocated the partition pi (dataset partitioning
step). More formally, P =

⋃n−1
i=0 pi such that pi ∩ pj = ∅ for i ̸= j; and

pi ̸= ∅ for each i. For simplicity, we assume that the number of examples in
the dataset, or |D|, is divisible by the number of workers, n = |W |; but the
approach and results can easily be extended to cases where the assumption
does not hold.

During an epoch, each worker independently trains its own replica of the
DNN model (local training step) on its own partition pi. At the end of an
epoch, a model synchronization step occurs, e.g., using a parameter server,
and the workers get a new identical replica of the model. This process is
repeated for a specified budget (e.g., a pre-determined number of epochs)
or until a model convergence criterion or performance metric is satisfied.
We are interested to see if using a partitioning function, based on notions of
example importance, may lead to better results compared to vanilla DPT’s
random partitioning in terms of the target performance metrics. We define
the importance of an example, denoted by Imp, as a mapping of an example
to a scalar value:

Imp : e → R (1)

In practice, to implement Imp, a certain property of the example or the
result of its interactions with the model (e.g., the loss generated by the
example after a forward pass) is used in combination with an aggregation
method (e.g., average, or variance of the losses over a number of epochs).

A partitioning function PartitioningFunction maps the examples to

98

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

workers to create the set of partitions P , where each worker wi gets the
partition pi. We are interested in using the output of Imp to construct the
PartitioningFunction. Example definitions for a PartitioningFunction
are explained in Section 3.3.

2.2 Prior Work on Example Importance
The diversity of examples in training datasets has attracted increasing at-
tention in recent years and has been exploited to improve the state-of-the-art
in domains such as dataset subset search [2], [3], [6] and sampling for SGD
[2], [4], [5], [7].

Chitta et al. [3] propose an ensemble active learning approach for dataset
subset selection using ensemble uncertainty estimation. They also show
that training classifiers on the subsets obtained in this way leads to more
accurate models compared to training on the full dataset. Isola et al. [8]
investigate the memorability of different examples based on the probability
of each image being recognized (perceived as a repetition by the viewer)
after a single view and train a predictor for image memorability based on
image features. Memorability is also a familiar phenomenon to humans, as
we can all think of images or visual memories that have stuck more in our
minds compared to other images. Arpit et al. [9] define example difficulty
as the average misclassification rate over a number of experiments.

Chang et al. [4] propose to prefer uncertain examples for SGD sam-
pling, e.g., the examples that are neither consistently predicted correctly
with high confidence nor incorrectly. They use two measures for “exam-
ple uncertainty”: (i) the variance of prediction probabilities and (ii) the
estimated closeness between the prediction probabilities and the decision
threshold. Yin et al. [7] observe that high similarity between concurrently
processed gradients may lead to the speedup saturation and degradation of
generalization performance for larger batch sizes and suggest that diversity-
inducing training mechanisms can reduce training time and enable using
larger batch sizes without the said side effects in distributed training.

Vodrahalli et al. [2] propose an importance measure for SGD sampling
based on the gradient magnitude of the loss of each example at the end of
training and use this measure to select a subset of the dataset for retraining.
This measure can also be used to study the diversity of examples in datasets.
Katharopoulos and Fleuret [5] propose an SGD sampling method that favors
the more informative examples, which they describe as the examples that
lead to the biggest changes in model parameters. Toneva et al. [6] propose
forgettability as an importance measure for dataset examples. A forgettable
example is an example that gets classified incorrectly at least once, after
its first correct classification, over the course of training. They also suggest

99

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

that the forgetting dynamics can be used to remove many examples from
the base training dataset without hurting the generalization performance of
the trained model.

Finally, in the domain of natural language processing, Swayamdipta et
al. [10] have investigated the difference in example importance. They intro-
duce data maps and calculate two measures for each example: the confidence
of the model in the true class and the variability of the confidence across
different epochs in a single training run. They then categorize the examples
into three categories: easy-to-learn, ambiguous, and hard-to-learn.

3 Importance-aware DPT
Importance-aware DPT consists of three stages of model training, as shown
in Figure 2. In the first stage, which we refer to as warmup training, we train
the DNN using vanilla DPT for a number of “warmup” epochs (Ewarmup).
Blocks (1) and (2) in Figure 2 show the first stage. In the second stage, we
calculate the importance of each example according to a predefined impor-
tance measure, e.g., the average loss value of each example over Ewarmup

training epochs. In the third stage (blocks (3)-(5) in Figure 2), we continue
training using importance-aware DPT in several intervals. Each interval
consists of three steps: (i) dataset partitioning, i.e., assigning examples to
partitions based on a heuristic and allocating one partition to each worker,
(ii) model training, i.e., training the DNN using those fixed partitions for
Einterval epochs, and (iii) example importance calculation, in which we re-
calculate and update the importance value of each example for the next
interval. In the rest of this section, we discuss importance-aware DPT in
more detail.

3.1 Warmup Training
In the first stage, warmup training, the model is trained with vanilla DPT
for Ewarmup epochs, in which the dataset is randomly partitioned among
the workers at the beginning of each epoch. We collect the value(s) needed
for calculating the importance of examples during this stage. In this work,
we use the loss value (the result of backpropagation forward pass) of each
example in each epoch to calculate its importance value, which is the aver-
age loss over a number of epochs. It is worth noting that we will discard
the loss values from the first Eignore epochs in warmup training (e.g., the
first three epochs), as the losses generated in the first few epochs are in-
fluenced by the random initialization of the neural network to a high degree.

100

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

(1)

Model
Training

Importance
Calculation

Heuristic-based
Dataset

Partitioning

Random
Dataset

Partitioning

Model
Training

Every epoch, for Ewarmup epochs Every Einterval epochs, until completion criteria is met

Warmup Training with Vanilla DPT Intervals of Model Training

(2) (3) (4) (5)

Figure 2: An overview of Importance-aware data-parallel training. The
model is first trained with Vanilla DPT for Ewarmup epochs, after which
the random dataset partitioning is replaced with heuristic-based dataset
partitioning, and the dataset is partitioned at the beginning of each
interval of training rather than at the beginning of each epoch.

2.4630 1.6089 ... 0.8972
...
...
...

0.9879 3.1874 ... 1.7276

Figure 3: example-epoch-loss matrix that is used to calculate the
importance score of each example.

3.2 Importance Calculation

The second stage is a pause in model training, in which we calculate the
importance of examples using values collected during warmup training. To
demonstrate how this works, consider we calculate the importance of each
example using “average loss across epochs”. To do this, during warmup
training, we collect the loss values (the result of the forward pass) of each
example across Ewarmup epochs. At the end of warmup training, we will
have a matrix such as in Figure 3. In this matrix, each row corresponds
to a single example, and each column corresponds to an epoch. Hence,
an element ai,j in the matrix is the loss value of example i in epoch j.
Calculating the importance of each example would then require a simple
aggregation or computation over each row, e.g., a row-wise average. At
the end of this stage, we have one or more scalar values attributed to each
example, indicating its importance, which we use for sorting or categorizing
the examples in the next stage (dataset partitioning).

101

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

Figure 4: Depiction of Stripes (left) and Blocks (right) partitioning
heuristics for a setting with eight examples (indexed in order of
importance) and four workers.

3.3 Dataset Partitioning Heuristics
Now that we have a mapping between examples and their importance val-
ues, we can use various heuristics to proceed with dataset partitioning for
importance-aware DPT. Remind that in vanilla DPT, the examples are
partitioned randomly across the parallel workers at the beginning of each
epoch. We have defined two such heuristics, namely Stripes and Blocks,
and compared them with random partitioning (i.e., vanilla DPT).

Stripes Heuristic.

The Stripes partitioning heuristic is a cyclic assignment of examples to
workers. The intuition behind using this heuristic is to preserve the same
distribution of examples with regard to their importance values, in each
partition. To this end, we sort the examples of the dataset D by their
importance value and create a list called Sorted Examples (SE). Then, the
partition Pi that is allocated to worker wi is determined as:

Pi = {e ∈ D | sorted_index(e) ≡ i(mod n)} (2)

where sorted_index(e) returns the index of example e in the sorted list SE,
n is the number of workers, and i = 0, ..., n − 1. The Stripes heuristic is
depicted on the left side of Figure 4.

Blocks Heuristic.

This partitioning heuristic assigns a continuous block of examples to each
worker so that we will end up with different importance distributions across
the workers. Assuming n workers, the Blocks heuristic allocates the first

102

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

|D|
n examples ranked in the SE list to the first worker, the second |D|

n of SE
to the second worker, and so on. Thus, the partition Pi that is allocated to
worker wi using the Blocks heuristic is determined as follows:

Pi = {e ∈ D | i × |D|
n

≤ sorted_index(e) < (i + 1) × |D|
n

} (3)

where sorted_index(e) returns the index of example e in the sorted list SE
and i = 0, ..., n − 1. The Blocks heuristic is depicted on the right side of
Figure 4.

3.4 Intervals of Model Training
After warmup training, calculating example importance, and partitioning
the dataset based on the importance values, we continue model training
using fixed partitions in intervals, each comprising of Einterval epochs. At
the beginning of each training interval, we repartition the dataset using the
importance values calculated during the previous interval. This means that
dataset repartitioning only occurs at the beginning of each interval rather
than at the beginning of every epoch (as in vanilla DPT).

4 Implementation in PyTorch
This section presents the implementation details of importance-aware data-
parallel training in PyTorch v1.10.1 [11], [12]. The implementation is mainly
based on several classes and methods that (i) track and calculate the im-
portance of examples as explained in Sections 3.1 and 3.2, (ii) partition the
dataset across workers based on importance-aware heuristics defined in Sec-
tion 3.3, and (iii) resume and continue the model training for fixed intervals
of Einterval epochs as described in Section 3.4.

4.1 Importance Calculation
Our proof-of-concept implementation of importance-aware DPT provides
importance calculation for each example based on its average forward pass
loss across a number of epochs. Loss function implementations in PyTorch,
by default, do a batch-wise reduction on the losses and return a scalar
aggregate value (e.g., the average loss of examples in the mini-batch when
using CrossEntropyLoss1). To get individual (per example) loss values, we
construct an additional loss function of the same type and set its reduction

1As described in https://pytorch.org/docs/stable/generated/torch.nn.CrossEn
tropyLoss.html

103

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

parameter to None. This way, this loss function returns a tensor instead of
a scalar.

Hence, each step of the training consists of two forward passes: the first
one uses the customized loss function and writes values to a local worker
copy of a loss-epochs matrix similar to the one depicted in Figure 3, and the
second forward pass uses the default loss function implementation which is
used with the backward pass. Each worker maintains its own copy of the
loss-epochs matrix, and before each dataset partitioning step, the workers
wait at a barrier (by calling torch.distributed.barrier()) for the main
process to merge the local copies and aggregate, i.e., to compute the row-
wise average which is the average loss of each example across the epochs.
The output of this step is a sorted list of tuples (example, importance
value) - the Sorted Examples list introduced in Section 3.3, that is used
with the importance-aware partitioning heuristics.

4.2 Dataset Partitioning Heuristics
In PyTorch, the DistributedDataSampler class implements the logic for
assigning examples to workers. By default, this class contains an imple-
mentation of random sampling, so we extend this class and add a sampler,
called ConstantSampler, to arbitrarily assign the examples to workers. In
this way, we decouple the implementation for assigning examples to work-
ers, from the implementation of importance-aware partitioning heuristics.
Hence, the same ConstantSampler can be used with different partitioning
heuristics.

A dataset partitioning heuristics provides a mapping between examples
and workers. We implement this mapping in PyTorch by creating a dic-
tionary (dict) with worker indices as keys and a list of example indices as
the value of each key. Depending on the heuristic, filling in this dictionary
would then require iterating over the list of examples or workers. The re-
sult of this step, which is a dict that maps examples to workers, is used to
construct a ConstantSampler instance that assigns the dataset examples
across the workers. Once the ConstantSampler instance is constructed, the
main process also reaches the barrier, so all the worker processes exit the
barrier they had entered before merging their local matrices (as described
in the previous section).

4.3 Modified Training Loop for Importance-aware Train-
ing

Model training in PyTorch typically consists of a few blocks of code for
setting up the training (e.g., downloading the dataset, constructing the

104

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

train/test/validation folds and data samplers, and creating the model), fol-
lowed by a single loop for iterative training of the model. To implement
different stages of importance-aware DPT, we first break down the default
training loop into two separate loops: one for warmup training (Section 3.1)
and the other for intervals of importance-aware training (Section 3.4). The
first loop is similar to a typical PyTorch training loop but is extended with
code to track and calculate the importance of examples. The second loop is
nested: an outer loop maintains the intervals, while the inner loop contains
the code for the actual dataset partitioning step, the example importance
calculation step, and the model training step.

5 Evaluation
In this section, we describe our experimental setup and scenarios and discuss
the results of the experiments. When talking about “model performance”
we mainly refer to best test accuracy of a model trained for 100 epochs.
Our hardware setup consists of a single machine with 4 GeForce RTX 2070
SUPER graphic cards, so we train on 4 workers.

5.1 Experimental Setup
To be able to empirically evaluate the effects of importance-aware dataset
partitioning on the performance of DPT systems, we use two well-known
DNN architectures for image classification: ResNet-18 and ResNet-34 [13]
and train them on CIFAR-10 and CIFAR-100 datasets [14]. We use official
PyTorch implementations of the models2 and initialize them with random
weights. In total, our experiments consist of 1830 training runs across 183
workloads (different combinations of datasets, models, partitioning heuris-
tics, importance metrics, Ewarmup, and Einterval). Three of these 183 work-
loads use vanilla DPT (ResNet-18 on CIFAR-10, ResNet-34 on CIFAR-10,
and ResNet-34 on CIFAR-100), and we use them as baselines for compari-
son. For all runs that use importance-aware DPT, we set Eignore to 5. We
use the same hyperparameters for all runs of vanilla DPT and importance-
aware DPT, i.e., SGD with a 0.9 Nesterov momentum and a learning rate
starting at 0.1 and weight decay (L2 penalty) of 0.0005.

Considerations for Randomness: The training process of DNNs is a
stochastic one and is affected by many factors, e.g., choice of hyperpa-
rameters, stochasticity in the optimization algorithms, and the stochastic
behavior of the tools, frameworks, and hardware used for training [15]. To

2See https://pytorch.org/vision/main/models.html

105

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

Table 1: Average best test accuracies (over ten runs) and standard
deviations for different combinations of Ewarmup (W) and Einterval (I),
when training ResNet-18 on CIFAR-10 with Stripes policy and loss
variance as the importance metric. The baseline (using vanilla DPT) is
82.983±0.327.

W
I 1 5 8 10 15 30

10 82.766±0.185 82.848±0.278 82.742±0.152 82.862±0.237 82.836±0.387 82.988±0.299
15 82.743±0.373 82.752±0.157 82.891±0.302 82.888±0.296 82.958±0.247 82.873±0.262
20 82.776±0.243 82.832±0.262 82.749±0.309 82.722±0.221 82.878±0.283 83.044±0.311
30 82.846±0.202 82.858±0.376 82.837±0.263 82.946±0.204 82.843±0.307 82.773±0.266
40 82.946±0.246 82.773±0.208 82.985±0.238 82.869±0.364 82.815±0.296 82.827±0.161
60 82.813±0.283 82.898±0.300 82.882±0.152 82.764±0.293 82.830±0.249 82.705±0.415

Table 2: Average best test accuracies (over ten runs) and standard
deviations for different combinations of Ewarmup (W) and Einterval (I),
when training ResNet-18 on CIFAR-10 with Stripes policy and average
loss as the importance metric. The baseline (using vanilla DPT) is
82.983±0.327.

W
I 1 5 8 10 15 30

10 82.941±0.262 82.880±0.339 82.859±0.312 82.815±0.290 82.836±0.226 82.891±0.195
15 82.885±0.231 82.816±0.287 82.841±0.316 82.778±0.259 82.866±0.260 82.773±0.247
20 82.952±0.314 82.913±0.247 82.903±0.240 82.889±0.265 82.841±0.278 82.919±0.210
30 82.939±0.294 82.854±0.185 82.853±0.236 82.889±0.227 82.743±0.335 82.929±0.279
40 82.864±0.138 82.903±0.152 82.883±0.225 82.766±0.220 82.905±0.244 82.851±0.236
60 82.908±0.337 82.931±0.339 82.818±0.245 82.956±0.228 82.806±0.195 82.758±0.237

better control for this stochasticity, each of the 183 workloads is repeated
ten times using ten pre-determined global random seeds. In Tables 1-5, we
report the average best test accuracy and standard deviation of ten runs for
each workload. Also, the box plot of the performance of the top five set-
tings of each table, alongside the performance of the corresponding baseline
(vanilla DPT), is shown in Figure 5.

5.2 Different Dataset Complexities
We consider workloads of (ResNet-34, Stripes, Variance) with each of the
CIFAR-10 and CIFAR-100 datasets. The results of the runs can be seen in
Tables 4-5, and in Figure 5 subfigures (4)-(5). CIFAR-10 and CIFAR-100
contain the same number of examples in train (50000 examples) and test
(10000 examples) subsets, but they differ in the number of classes. CIFAR-
10 has ten classes (5000 training examples per class), and CIFAR-100 has
100 classes (500 training examples per class). Hence, CIFAR-100 has a
higher complexity than CIFAR-10 in terms of classes.

106

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

vanilla W20-INT30W10-INT30 W40-INT8 W15-INT15W30-INT10
setting

82.4

82.6

82.8

83.0

83.2

83.4

be
st

_a
cc

ur
ac

y

vanilla W60-INT10 W20-INT1 W10-INT1 W30-INT1 W60-INT5
setting

82.4

82.6

82.8

83.0

83.2

83.4

83.6

be
st

_a
cc

ur
ac

y

(1) CIFAR-10, ResNet-18, Stripes, Variance (2) CIFAR-10, ResNet-18, Stripes, Average

vanilla W10-INT5 W30-INT8 W40-INT1 W15-INT1 W30-INT1
setting

82.4

82.6

82.8

83.0

83.2

83.4

83.6

be
st

_a
cc

ur
ac

y

vanilla W30-INT10W20-INT15 W20-INT1 W15-INT15W15-INT10
setting

81.8

82.0

82.2

82.4

82.6

82.8

83.0

83.2

83.4

be
st

_a
cc

ur
ac

y

(3) CIFAR-10, ResNet-18, Blocks, Variance (4) CIFAR-10, ResNet-34, Stripes, Variance

vanilla W30-INT1 W60-INT30 W15-INT8 W40-INT8 W60-INT5
setting

47.5

48.0

48.5

49.0

49.5

50.0

be
st

_a
cc

ur
ac

y

(5) CIFAR-100, ResNet-34, Stripes, Variance

Figure 5: Box plots comparing the performance of the top 5 settings of Ewarmup (W)
and Einterval (INT) for different combinations of (Dataset, Model, Partitioning
Heuristic, Importance Metric). The leftmost box plot in each subfigure is the
performance of vanilla DPT (baseline), and the other five box plots are ordered in
decreasing average best test accuracy. The white square on each box plot denotes the
average best test accuracy for a setting. Each subfigure (1)-(5) corresponds to a table
with the same number, which contains the average best test accuracies and standard
deviations over ten runs for each of the combinations of W and INT. 107

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

Table 3: Average best test accuracies (over ten runs) and standard
deviations for different combinations of Ewarmup (W) and Einterval (I),
when training ResNet-18 on CIFAR-10 with Blocks policy and loss
variance as the importance metric. The baseline (using vanilla DPT) is
82.983±0.327.

W
I 1 5 8 10 15 30

10 82.921±0.352 83.067±0.270 82.778±0.426 82.743±0.218 82.662±0.240 82.706±0.165
15 82.992±0.321 82.899±0.308 82.890±0.253 82.805±0.165 82.664±0.178 82.109±0.338
20 82.845±0.292 82.939±0.376 82.850±0.429 82.716±0.205 82.747±0.289 82.523±0.165
30 82.956±0.189 82.942±0.309 83.055±0.153 82.954±0.382 82.815±0.247 82.583±0.206
40 83.001±0.270 82.861±0.336 82.786±0.247 82.925±0.18 82.865±0.177 82.894±0.254
60 82.918±0.348 82.873±0.283 82.848±0.271 82.886±0.273 82.884±0.228 82.462±0.222

Table 4: Average best test accuracies (over ten runs) and standard
deviations for different combinations of Ewarmup (W) and Einterval (I),
when training ResNet-34 on CIFAR-10 with Stripes policy and loss
variance as the importance metric. The baseline (using vanilla DPT) is
82.661±0.478.

W
I 1 5 8 10 15 30

10 82.650±0.547 82.653±0.399 82.590±0.395 82.621±0.243 82.751±0.461 82.753±0.632
15 82.537±0.332 82.424±0.510 82.745±0.401 82.799±0.481 82.832±0.239 82.433±1.020
20 82.845±0.441 82.659±0.637 82.787±0.407 82.606±0.541 82.890±0.321 82.492±0.300
30 82.671±0.434 82.539±0.307 82.719±0.509 82.920±0.287 82.594±0.434 82.720±0.589
40 82.669±0.426 82.773±0.403 82.422±0.728 82.530±0.305 82.649±0.339 82.562±0.353
60 82.789±0.336 82.615±0.342 82.683±0.397 82.768±0.525 82.678±0.451 82.622±0.661

The results show that there are several combinations of (Ewarmup, Einterval)
for training settings that can train better models than vanilla DPT. Thus,
the gains of importance-aware DPT seem to hold across different datasets,
given that we can find and select good hyperparameters for the training
setting (e.g., Ewarmup and Einterval).

5.3 Different Models

We consider workloads of (CIFAR-10, Stripes, Variance) with each of the
ResNet-18 (18 layers, 8 residual blocks) and ResNet-34 (34 layers, 16 resid-
ual blocks) models [13]. The results of the runs can be seen in Tables 1
and 4, and in Figure 5 subfigures (1) and (4). There are combinations of
(Ewarmup, Einterval) corresponding to each model that train better models
than their corresponding baselines, but ResNet-34 shows to gain more from
importance-aware DPT than ResNet-18.

108

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

Table 5: Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Einterval (I), when training ResNet-34
on CIFAR-100 with Stripes policy and loss variance as the importance metric. The
baseline (using vanilla DPT) is 49.042±0.698.

W
I 1 5 8 10 15 30

10 49.169±0.335 49.064±0.312 49.167±0.432 48.758±0.597 49.04±0.503 49.033±0.450
15 49.156±0.332 48.959±0.437 49.264±0.292 49.186±0.498 49.073±0.573 49.079±0.351
20 48.978±0.550 49.144±0.637 49.024±0.365 49.149±0.297 48.944±0.436 48.977±0.380
30 49.278±0.399 48.906±0.792 49.102±0.393 48.897±0.432 49.152±0.446 48.966±0.389
40 49.129±0.549 48.978±0.527 49.262±0.489 49.155±0.387 48.998±0.450 49.024±0.284
60 49.083±0.348 49.224±0.338 49.027±0.453 49.194±0.396 49.107±0.461 49.270±0.429

5.4 Different Partitioning Heuristics
We consider workloads of (CIFAR-10, ResNet-18, Variance) with each of
the Stripes and Blocks heuristics. The results of the runs can be seen in
Tables 1 and 3, and in Figure 5 subfigures (1) and (3).

The results show that for both heuristics, there are combinations of
(Ewarmup, Einterval) that can train better models than vanilla DPT. It
is particularly interesting that training using the Blocks heuristic shows
comparable performance to training with both Stripes heuristic and vanilla
DPT.

5.5 Different Importance Metrics
With the loss values generated by each example in forward passes across sev-
eral epochs as our importance measure, we evaluate the effects of the choice
of two different metrics: average loss and loss variance. We consider work-
loads of (CIFAR-10, ResNet-18, Stripes) with each of the above metrics.
The results of the runs can be seen in Tables 1-2, and in Figure 5 subfigures
(1)-(2). Loss variance as an importance metric performs marginally better
than the average loss.

5.6 Added Overheads
The overheads of importance-aware DPT compared to vanilla DPT include
(1) tracking importance data for each example at every epoch (a.k.a., im-
portance tracking overhead) and (2) calculating the importance of examples
and repartitioning the dataset based on heuristics at the beginning of each
interval (a.k.a., heuristic overhead). In Table 6, we report the statistics on
these overheads (in seconds) when we train ResNet-18 on CIFAR-10 for 100
epochs using four workers and the different 36 combinations of Ewarmup and

109

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

Table 6: Overhead statistics (in seconds) of importance-aware DPT when
training ResNet-18 on CIFAR-10 with the different 36 combinations of
Ewarmup and Einterval.

Quantity Min Average Max
Importance tracking overhead (each epoch) 0.979 1.052 1.407

Heuristic overhead (each interval) 2.456 2.643 5.213
Total training time 715 721.556 758

Einterval (as reported in Tables 1-5). The importance tracking overhead is
independent of Ewarmup and Einterval, as it happens at every epoch, and
on average accounts for 14.57% of the total wallclock time. However, we
should note that this is a prototype implementation of importance-aware
DPT, and many optimizations can be made to significantly reduce the over-
heads (e.g., getting the individual example losses and the mini-batch losses
in the same forward pass or using MPI operations for calculating the im-
portance of examples). By only requiring repartitioning at every Einterval,
importance-aware DPT has the potential to significantly reduce the net-
work and I/O overhead that vanilla DPT requires for fetching examples at
each epoch, especially in large training settings consisting of hundreds of
thousands or millions of examples.

6 Conclusion
In this paper, we proposed importance-aware DPT, a data-parallel training
approach for deep neural networks, that partitions the dataset examples
across the workers based on a notion of the importance of each example.
Our empirical evaluation across a number of well-known image classification
workloads suggests that by setting relevant values for the hyperparameters
of this approach, most notably Ewarmup and Einterval, we can find better
models (in terms of best test accuracy) compared to when training with
vanilla DPT. Future work can concentrate on, e.g., using hyperparame-
ter tuning methods for finding the best values for the hyperparameters of
importance-aware DPT and evaluating the effects of different importance
metrics and measures.

Acknowledgement
This work has been supported by the ExtremeEarth project funded by Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme under

110

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

Grant Agreement No. 825258. The authors would like to acknowledge
funding from Vinnova for the Digital Cellulose Competence Center (DCC),
Diary number 2016–05193. The computations for some of the experiments
were enabled by resources provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS) and the Swedish National Infras-
tructure for Computing (SNIC) at C3SE, partially funded by the Swedish
Research Council through grant agreement no. 2022-06725 and no. 2018-
05973. Artifacts are available in https://doi.org/10.5281/zenodo.785
5247 and https://github.com/ssheikholeslami/importance-aware-d
ata-parallel-training.

References
[1] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-

efficient distributed deep learning: A comprehensive survey,” arXiv
preprint arXiv:2003.06307, 2020.

[2] K. Vodrahalli, K. Li, and J. Malik, “Are all training examples created
equal? an empirical study,” arXiv preprint arXiv:1811.12569, 2018.

[3] K. Chitta, J. M. Alvarez, E. Haussmann, and C. Farabet, “Train-
ing data distribution search with ensemble active learning,” arXiv
preprint arXiv:1905.12737, 2019.

[4] H.-S. Chang, E. Learned-Miller, and A. McCallum, “Active bias: Train-
ing more accurate neural networks by emphasizing high variance sam-
ples,” Advances in Neural Information Processing Systems, vol. 30,
2017.

[5] A. Katharopoulos and F. Fleuret, “Not all samples are created equal:
Deep learning with importance sampling,” in International Confer-
ence on Machine Learning, PMLR, 2018, pp. 2525–2534.

[6] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and
G. J. Gordon, “An empirical study of example forgetting during deep
neural network learning,” in ICLR, 2019.

[7] D. Yin, A. Pananjady, M. Lam, D. Papailiopoulos, K. Ramchandran,
and P. Bartlett, “Gradient diversity: A key ingredient for scalable
distributed learning,” in International Conference on Artificial Intel-
ligence and Statistics, PMLR, 2018, pp. 1998–2007.

[8] P. Isola, J. Xiao, D. Parikh, A. Torralba, and A. Oliva, “What makes
a photograph memorable?” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 7, pp. 1469–1482, 2013.

111

PAPER 4. IMPORTANCE-AWARE DATA-PARALLEL TRAINING

[9] D. Arpit, S. Jastrzebski, N. Ballas, et al., “A closer look at memo-
rization in deep networks,” in International Conference on Machine
Learning, PMLR, 2017, pp. 233–242.

[10] S. Swayamdipta, R. Schwartz, N. Lourie, et al., “Dataset cartogra-
phy: Mapping and diagnosing datasets with training dynamics,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 9275–9293.

[11] S. Li, Y. Zhao, R. Varma, et al., “Pytorch distributed: Experiences
on accelerating data parallel training,” Proceedings of the VLDB En-
dowment, vol. 13, no. 12, 2020.

[12] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style,
high-performance deep learning library,” Advances in neural informa-
tion processing systems, vol. 32, 2019.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[14] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” University of Toronto, Tech. Rep., 2009.

[15] D. Zhuang, X. Zhang, S. Song, and S. Hooker, “Randomness in neural
network training: Characterizing the impact of tooling,” in Proceedings
of Machine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu,
Eds., vol. 4, 2022, pp. 316–336.

112

Paper 5

Deep Neural Network Weight
Initialization from Hyperparameter
Tuning Trials

The 31st International Conference on Neural Information Processing
(ICONIP), 2024

113

Deep Neural Network Weight
Initialization from Hyperparameter Tuning

Trials

Sina Sheikholeslami1, Tianze Wang1, Amir H. Payberah1,
Jim Dowling2, and Vladimir Vlassov1

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Hopsworks AB, Stockholm, Sweden

Abstract

Training of deep neural networks from scratch requires initializa-
tion of the neural network weights as a first step. Over the years,
many policies and techniques for weight initialization have been
proposed and widely used, including Kaiming initialization and
different variants of random initialization. On the other hand,
another requirement for starting the training stage is to choose
and set suitable hyperparameter values, which are usually ob-
tained by performing several hyperparameter tuning trials. In
this paper, we study the suitability of weight initialization using
weights obtained from different epochs of hyperparameter tuning
trials and compare it to Kaiming uniform (random) weight initial-
ization for image classification tasks. Based on an experimental
evaluation using ResNet-18, ResNet-152, and InceptionV3 mod-
els, and CIFAR-10, CIFAR-100, Tiny ImageNet, and Food-101
datasets, we show that weight initialization from hyperparameter
tuning trials can speed up the training of deep neural networks by
up to 2x while maintaining or improving the best test accuracy
of the trained models, when compared to random initialization.

1 Introduction
Training deep neural networks (DNNs) requires setting values for some pa-
rameters of the training process, e.g., learning rate, dropout rate, number of
hidden layers, the amount of weight decay, and various settings of the model
optimization algorithm, before starting the training stage. These parame-
ters are referred to as hyperparameters (HPs), or meta-parameters for DNN
model training, and their values are typically found during a stage called
hyperparameter tuning (or hyperparameter optimization), where our goal

115

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

is to find the right combination for the value of different hyperparameters
that maximize the prediction accuracy of the model.

The HP tuning stage is usually started by specifying a search space of
hyperparameters, which includes the list of hyperparameters and the pos-
sible or allowed values each can take. Then, an HP tuning algorithm (or
approach) is selected based on the downstream task and the computational
and time constraints. The search process involves multiple trials, each train-
ing a model with a combination of hyperparameter values. Over the years,
many hyperparameter tuning algorithms have been proposed [1], with grid
search, random search [2], Bayesian optimization [3], and Asynchronous
Successive Halving Algorithm (ASHA) [4] being the most popular. In the
HP tuning stage, the training data is usually divided into (smaller) training
and validation sets. Then, the model will be trained for a reduced number
of epochs (usually a fraction of the number of epochs used for full model
training) on the (smaller) training set using different combinations of hy-
perparameter values. The resulting performance from various combinations
is then evaluated against the validation sets. At the end of this stage, the
hyperparameters required for model training are chosen, and we proceed to
the training stage.

Prior to the full model training stage, however, we need to perform
one additional step, i.e., weight initialization [5], after deciding the val-
ues of hyperparameters. This involves setting appropriate initial values for
the DNN model for effective training, e.g., avoiding issues like exploding
and vanishing gradients [6]. Over the years, researchers and practitioners
have proposed numerous approaches for weight initialization [5], including
random initialization, Xavier (Glorot) initialization [7], and Kaiming (He)
initialization [8]. Different initialization approaches use different heuristics
and techniques to provide a better starting point for the model training
stage, based on, e.g., information about the model, priors on the distribu-
tion of the dataset, etc. Nevertheless, to the best of our knowledge, there
is a lack of weight initialization schemes that would use computations or
results from the hyperparameter tuning stage, where the model from the
best-performing trial has already “learned” some useful information from
the dataset used for hyperparameter tuning, and can be potentially reused
to provide a more appropriate starting point for the full model training.

Inspired by the idea of reusing computations or results of different stages
of creating a deep learning (DL) system [9], in this paper we try to un-
derstand how weight initialization using the results of the hyperparameter
tuning stage compares to the current best practices for weight initialization,
in particular, the default weight initialization in PyTorch which is a variant

116

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

of Kaiming uniform initialization for convolutional layers1. Our driving mo-
tivation was to see if we could somehow “reuse” some of the computations
of the hyperparameter tuning stage in the training stage.

Contributions. In this paper, we:

• propose a novel weight initialization approach that uses computation
results (i.e., model weights) of the hyperparameter tuning stage to
speed up and enhance the model training stage, and

• through an experimental evaluation consisting of 232 training runs,
we show that for some combinations of models and datasets, weight
initialization from hyperparameter tuning trials can outperform ran-
dom initialization in terms of time-to-target-accuracy (which trans-
lates into speedup of the training stage by up to 2x), while achieving
similar or even better best test accuracy.

2 Background
Weight Initialization. Neural network weight initialization is a very cru-
cial and well-studied subject in the machine learning and deep learning
literature [5], [6], [10], [11]. Weights are parameters that the neural network
learns during the training process. Each weight represents the strength of
connections between neurons, and the weights in a neural network deter-
mine how it will react in the output given a certain input. The primary goal
of the training stage is to learn the appropriate values of all the weights from
the data so that the neural network would perform well on the training data
and generalize well on unseen test data.

Weight initialization is a crucial step in the training process of neu-
ral networks. The training process of neural networks is iterative by nature
and is dominated by methods of stochastic gradient descent and its variants,
and most neural networks are strongly affected by the choice of initializa-
tion [12]; hence, we need a suitable initial point for the training process
where weights are initialized. The choice of the initial point can affect the
speed of convergence, determine whether the neural network converges to a
point with low and high cost, and sometimes, whether it converges at all.
Common weight initialization techniques implemented and used in different
deep learning software frameworks include variants of Xavier (Glorot) and
Kaiming (He) initialization. In this work, we propose a new method that

1The list of available initializations in PyTorch: https://pytorch.org/docs/stable/
nn.init.html

117

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

uses the best weight point found during hyperparameter tuning trials as the
initial point for the model training stage.

Throughout the years, several weight initialization approaches based on
“pre-training” have been proposed [13]–[17]. Our approach differs from this
body of work, particularly in that they all include various computations and
calculations (e.g., using Autoencoders) on the pre-trained neural network,
whereas we directly use the exact weights from the winning hyperparameter
tuning trial. We refer readers to [5] for a recent review of weight initializa-
tion strategies and approaches.

Hyperparameter Tuning and Optimization. Apart from model weights
(parameters) that determine the model itself, most machine learning models
have settings that we usually refer to as hyperparameters, e.g., the number
of hidden layers in the model, choice of the optimizer, learning rate, etc.
Hyperparameters specify the details of the learning process but are not part
of the result of training the model. Some hyperparameters, e.g., batch size
and number of hidden layers, affect the time and memory cost of the train-
ing process. Other hyperparameters, e.g., choice of optimizer and floating
point precision, affect the quality of the learned model after the training
process.

One can choose between two basic approaches for selecting hyperparame-
ters, i.e., manually or automatically. Choosing a hyperparameter manually
requires domain knowledge and a deep understanding of the model, the
downstream task, and the training process itself. Apart from that, choos-
ing manually would often involve a tedious process of trial and error by
trying out different potential values. Automated selection of hyperparame-
ters, often referred to as hyperparameter tuning (or optimization), lifts the
requirement of domain knowledge and requires less manual effort.

In a typical setting of HP tuning, we need to define a search space, a
search strategy, and a computation budget. The search space specifies the
ranges of values of the hyperparameters that we are interested in optimiz-
ing. A search strategy defines how we navigate through the search space to
find the optimal set of values for the given hyperparameters. Finally, the
computation budget limits the amount of time and computation used for
the search. Common search strategies include grid search, random search,
Bayesian optimization, Asynchronous Successive Halving (ASHA), etc. The
computation budget can be specified in wall-clock time, number of epochs,
number of evaluations, etc. We refer readers to [1], [18], [19] for a detailed
review of hyperparameter tuning and optimization methods.

Meta-learning and Weight Initialization. A number of approaches
have been proposed to learn “initializers” or “policies” that can suggest suit-

118

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

able initial parameters. Among these proposals, [20] introduce MetaInit, an
algorithm that learns to suitably initialize the parameters of a given neural
network for a given task. Our work is different from this line of research
in that we do not attempt to “learn” any set of weights for the purpose
of initialization; instead, we propose to “reuse” the model weights that are
already learned during hyperparameter tuning trials as initial weights for
the model training stage.

3 Methodology
Based on the idea of reusing results and computations of one stage of DL
systems in another, we propose a novel weight initialization approach that
uses weights from the top-performing or “winning” hyperparameter tuning
trials to initialize the model weights for the model training stage. Gener-
ally, the performance of the HP tuning trial is measured using the same
performance metric as the training task, e.g., validation (test) accuracy for
classification tasks. The assumption is that for one trial in the hyperparam-
eter tuning stage to be the winner, the weights in the model of that trial
have already accomplished learning from the data to some degree compared
to random initialization. Furthermore, it might even be potentially a decent
set of weights as it is the winner among all the other trials allowed in the
hyperparameter tuning budget.

Reusing the weights of the best hyperparameter tuning trial requires a
minor modification to the typical hyperparameter tuning loop to save the
weights of the model at certain epochs during the trials. Figure 1 and
Algorithm 1 show the needed modification. This essentially means that in
addition to suitable hyperparameter values, we also save (and later reuse)
the model weights from the best hyperparameter tuning trial.

Algorithm 1 Hyperparameter Tuning with Weight Saving
Require: Total number of hyperparameter tuning trials N , number of

epochs per trial E
1: for i = 1 to N do
2: Choose a set of hyperparameter values for the trial
3: for e = 1 to E do
4: Perform a forward and backward pass on the model
5: Update the model weights
6: Save the model weights to storage as weights_i_e
7: end for
8: end for

119

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

Train and
Evaluate the

Model

Every epoch, for Etuning epochs

Save the new model weights

A Single Hyperparameter Tuning Trial

Hyperparameter
Values

Initial Model
Weights

Trial
Model

Weights

Repeat for N trials

Select the Best
Hyperparameter

Tuning Trial

Figure 1: The modified hyperparameter tuning experiment, where in
addition to suitable hyperparameter values, we also use the weights from
the winning hyperparameter tuning trial to initialize the model for the
model training stage.

We can see in Algorithm 1 that our only modification in a typical hy-
perparameter tuning trial corresponds to line 6, in which we save the model
weights to storage after each epoch. Based on our specific initialization pol-
icy, we do this to choose a set of initial weights from any given epoch for
the training stage. As an example, in Figure 2, we have shown the best test
accuracy of models initialized with different configurations. The numbers
on the X axis, i.e., 2, 5, 10, 15, 20, and 25, correspond to different values for
e when initializing the model with weights_i_e before starting the train-
ing stage, where the value of i corresponds to the index of the “winning”
hyperparameter tuning trial (i.e., the trial with the best final validation
accuracy). We should mention that for very large models, saving all the
weights of different model variants might require considerable storage space
and time to write to external storage. However, one can mitigate this by
keeping track of the performance metric of top-T models (with T being a
predefined constant number and only triggering the model save function
when better models, e.g., with regards to test accuracy, are found).

4 Experimental Evaluation
To evaluate our weight initialization approach, we perform a number of ex-
periments on different models and datasets and compare weight initializa-
tion from hyperparameter tuning to PyTorch’s default initialization scheme,
which uses a combination of various techniques, including Kaiming uni-
form [8] for convolutional and linear layers. We repeat the experiments
several times as a way to control for randomness.

Our two main evaluation metrics are (i) best test accuracy, which is the

120

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

maximum (top-1) accuracy of the model on the test set during training,
and (ii) time-to-target-accuracy (TTA), which is measured as the number
of epochs it takes for the model to surpass a relatively high test accuracy
as a milestone. The former metric indicates the model performance for
a configuration, while the latter suggests the effect of a configuration on
training time. To summarize, we want to know if our initialization approach
can result in better models (higher test accuracy) while speeding up training
(lower TTA). We choose the target accuracies based on our observations
from the training curves of each model/dataset pair.

4.1 Experiment Setup
Hyperparameter Search Space. For the ResNet models, we use SGD
with momentum (0.9) and follow a search space inspired by Zhang et al. [21]
and common practice: a set of possible learning rate values of {0.01, 0.03,
0.05, 0.1, 0.2, 0.3} and a set of possible weight decay values of {0.0003, 0.001,
0.003}. Details about the hyperparameter tuning for the InceptionV3 model
can be found in 4.6. We try a subset of the different combinations using
random search. We use PyTorch [22] on Ray [23], [24] for hyperparameter
tuning and parallel execution of trials while assigning a different random
seed to each trial. For hyperparameter tuning of experiments that use the
CIFAR-10, CIFAR-100, and Food-101 datasets, the training datasets pro-
vided by PyTorch were randomly partitioned into 80/20 train/validation
splits. The corresponding subsections below explain more details on hyper-
parameter tuning for each task.

Weight Initialization Experiments. The goal of this set of experiments
is to investigate if we can use the model weights obtained during the hyper-
parameter tuning to initialize the model before starting the training round.
We select a number of common model/dataset combinations (e.g., ResNet-
18 on CIFAR-10). For each combination, we tune a number of model-
independent hyperparameters (i.e., learning rate and weight decay) for a
number of trials using random search, with no early stopping. Within each
hyperparameter tuning trial, we save the model weights after every epochf.
We then rank the trials in descending order of final validation accuracy and
specify the winning hyperparameter tuning trial. Moving on to the model
training stage, for weight initialization we use weights from several epochs
of the winning trial. We then train the model for a number of epochs, and
report the best test accuracy of each training trial. As the baseline for com-
parison, we use random initialization as implemented in PyTorch, which in
particular uses Kaiming uniform initialization for convolutional layers.

121

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

Randomness Control and Reproducibility. When training deep neu-
ral networks, we should deal with many sources of randomness, including
non-determinisms in hardware, software frameworks, and optimization al-
gorithms and computations [25], [26]. This stochasticity can drastically
influence the performance of models and make it hard for researchers to
draw strong conclusions from experimental evaluations. To alleviate this
and allow for reasonable reproducibility of our results, We use a predefined
set of global random seeds, repeat each set of experiments several times,
and report the averages and standard deviations for each set of results2.

4.2 EXP1: ResNet-18 on CIFAR-10
Our first set of experiments deals with tuning and training ResNet-18 on
the CIFAR-10 dataset3. The CIFAR-10 dataset contains 60000 32×32 color
images in 10 classes (6000 images per class). There are 50000 training im-
ages and 10000 test images.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 10 tuning trials, with each trial
consisting of 30 epochs of training with a batch size of 256. The winning
trial had achieved a final validation accuracy of 88.48% with a learning rate
of 0.01 and weight decay rate of 0.0003.

Training Configurations. Using the hyperparameters and weights from
the winning hyperparameter tuning trial, we try 7 different weight initial-
izations and compare them to a baseline in which we initialize the model
weights using PyTorch’s default scheme. These 7 different sets of weights
are taken from epochs #2, #5, #10, #15, #20, #25, and the final epoch
(HP Final, #30). Each configuration is trained for 200 epochs, and we
repeat the training 8 times (with 8 different global seeds). Based on the
training curves of the models we set the target to 90.00%. The results of
this experiment are also presented in Table 1.

We can see that all the models that use weight initialization from the hy-
perparameter tuning stage achieve this milestone significantly faster than
the baseline approach (random initialization), and most of them achieve a
higher best test accuracy on average compared to the baseline. To verify the

2Code and raw results from our experiments can be found in https://github.com/s
sheikholeslami/dnn-weight-initialization-from-hp-tuning.

3CIFAR-10 and CIFAR-100 datasets: https://www.cs.toronto.edu/~kriz/cifar.ht
ml

122

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

2 5 10 15 20 25 HP Final Random

weight initialization policy

94.0

94.1

94.2

94.3

94.4

94.5

94.6

b
es

t
ac

cu
ra

cy

Figure 2: Best test accuracy after 200 epochs of training ResNet-18 on
CIFAR-10, using different weight initialization configurations. Numerical
values are reported in Table 1.

significance of the results, we performed a paired t-test and Mann–Whitney
U-test on results from “Epoch 25” and “Random” configurations, and the
results were: t-statistic=3.521, p-value=0.00970; U1=3.0, p-value=0.00108,
both indicating a significant difference in terms of best test accuracy. This
specific configuration also shows an speedup of 2.027x in terms of TTA
compared to random initialization.

4.3 EXP2: ResNet-18 on CIFAR-100
In this experiment, we tune and train ResNet-18 this time on the CIFAR-
100 dataset. CIFAR-100 is similar to CIFAR-10 in terms of dimensions and
total number of examples, but it has 100 classes containing 600 images each.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 10 tuning trials, with each trial
consisting of 40 epochs of training with a batch size of 256. The winning
trial had achieved a final validation accuracy of 57.74% with a learning rate
of 0.1 and weight decay rate of 0.0003.

Training Configurations. Using the hyperparameters and weights from
the winning hyperparameter tuning trial, we try 6 different weight initial-
izations and compare them to a baseline in which we initialize the model
weights using PyTorch’s default scheme. These 6 different sets of weights

123

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

2 5 10 15 20 25 HP Final Random

weight initialization policy

10

15

20

25

30

ta
rg

et
ac

cu
ra

cy
ep

o
ch

Figure 3: First epoch to reach the target (90%) test accuracy when
training ResNet-18 on CIFAR-10, using different weight initialization
configurations.

are taken from epochs #5, #10, #15, #30, #35, and the final epoch (HP
Final, #40). Each configuration is trained for 200 epochs, and we repeat the
training 8 times (with 8 different global seeds). Based on the training curves
of the models we set the target to 75.00%. The results of this experiment
are presented in Figure 4 and Table 2.

4.4 EXP3: ResNet-18 on Tiny ImageNet
In this experiment, we tune and train ResNet-18 on the Tiny ImageNet4

dataset. Tiny ImageNet is a small-scale version of the larger ImageNet
dataset, and contains 100000 downsized 64 × 64 color images in 200 classes
as the training set, as well as 50 images for validation and 50 images for
test in each class.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 12 tuning trials, with each trial
consisting of 40 epochs of training with a batch size of 256. The winning
trial had achieved a final validation accuracy of 35.94% with a learning rate
of 0.3 and a weight decay rate of 0.0003.

Training Configurations. Using the hyperparameters and weights from
the winning hyperparameter tuning trial, we try 6 different weight initial-

4Accessible from https://image-net.org/download-images.php

124

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

Table 1: Results from the experiments on ResNet-18 and CIFAR-10. Each
trial consists of training the model for 200 epochs. The experiments for
each configuration (row) are repeated with 8 different random seeds, and
the average values are reported. The TTA in this table indicates the first
epoch in which the model achieves at least a 90.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 2 94.198±0.108 24.0
Epoch 5 94.289±0.107 21.25
Epoch 10 94.319±0.085 20.75
Epoch 15 94.339±0.166 18.5
Epoch 20 94.351±0.103 14.625
Epoch 25 94.391±0.061 14.375

HP Final Epoch 94.316±0.061 12.75
Random (Kaiming + Uniform) 94.231±0.098 29.125

izations and compare them to a baseline in which we initialize the model
weights using PyTorch’s default scheme. These 6 different sets of weights
are taken from epochs #5, #10, #15, #30, #35, and the final epoch (HP
Final, #40). Each configuration is trained for 200 epochs, and we repeat
the training 8 times (with 8 different global seeds). Based on the final accu-
racies and training curves, we set the target to 40.00%. The results of this
experiment are presented in Figure 5 and Table 3.

4.5 EXP4: ResNet-152 on CIFAR-100
For this experiment, we change the model from ResNet-18 to ResNet-152,
which is the larger variant of the ResNet family of models [27], and train
it on the CIFAR-100 dataset. Tiny ImageNet is a small-scale version of
the larger ImageNet dataset, and contains 100000 downsized 64 × 64 color
images in 200 classes as the training set, as well as 50 images for validation
and 50 images for test in each class.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 10 tuning trials, with each trial
consisting of 80 epochs of training with a batch size of 128. The winning
trial had achieved a final validation accuracy of 51.13% with a learning rate
of 0.01 and a weight decay rate of 0.003.

Training Configurations. Using the hyperparameters and weights from
the winning hyperparameter tuning trial, we try three different weight ini-
tializations and compare them to a baseline in which we initialize the model

125

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

5 10 15 30 35 HP Final Random

weight initialization policy

76.6

76.8

77.0

77.2

77.4

77.6

b
es

t
ac

cu
ra

cy

Figure 4: Best test accuracy after 200 epochs of training ResNet-18 on
CIFAR-100, using different weight initialization configurations. Numerical
values are reported in Table 2.

weights using PyTorch’s default scheme. These three sets of weights are
taken from epochs #65, #75 and the final epoch (HP Final, #80). Each
configuration is trained for 200 epochs, and we repeat the training four
times (with four different global seeds). Based on the final accuracies and
training curves, we set the target to 75.00%. The results of this experiment
are presented in Figure 6 and Table 4.

4.6 EXP5: InceptionV3 on Food-101
For this experiment, we use the InceptionV3 network [28], and train it on
the Food-101 dataset [29]. The Food-101 dataset contains 101000 color im-
ages in 101 classes and 750 training and 250 test images per each class.

Hyperparameter Tuning. For hyperparameter tuning, we used the fol-
lowing search space: learning rate values sampled from a loguniform dis-
tribution between 0.0001 and 0.1, momentum from a uniform distribution
between 0.8 and 0.99, weight decay from a loguniform distribution between
0.00001 and 0.001, and the maximum number of iterations (T_max) for the
Cosine Annealing learning rate scheduler from the set of possible values of
50, 100, 200. We performed 12 tuning trials, with each trial consisting of 20
epochs of training with a batch size of 64. The winning trial had achieved
a final validation accuracy of 40.50% with a learning rate of 0.021.

126

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

Table 2: Results from the experiments on ResNet-18 and CIFAR-100.
Each trial consists of training the model for 200 epochs. The experiments
for each configuration (row) have been repeated with 8 different random
seeds and the average values are reported. The TTA in this table indicates
the first epoch in which the model achieves at least a 75.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 5 77.044±0.191 122.75
Epoch 10 77.152±0.219 123.25
Epoch 15 77.112±0.138 123.125
Epoch 30 77.292±0.181 124.5
Epoch 35 77.124±0.287 124.25

HP Final Epoch 76.947±0.193 124.25
Random (Kaiming + Uniform) 77.080±0.299 122.375

Table 3: Results from the experiments on ResNet-18 and Tiny ImageNet.
Each trial consists of training the model for 200 epochs. The experiments
for each configuration (row) are repeated with 8 different random seeds
and the average values are reported. The TTA in this table indicates the
first epoch in which the model achieves at least a 40.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 5 44.062±0.536 153.75
Epoch 10 44.085±0.403 153.25
Epoch 15 43.885±0.245 153.5
Epoch 30 44.328±0.479 153.875
Epoch 35 44.362±0.415 154.125

HP Final Epoch 44.223±0.275 154.25
Random (Kaiming + Uniform) 44.428±0.485 154.5

Training Configurations. Using the hyperparameters and weights from
the winning hyperparameter tuning trial, we try four different weight ini-
tializations and compare them to a baseline in which we initialize the model
weights using PyTorch’s default scheme. These four sets of weights are
taken from epochs #5, #10, #15, and the final epoch (HP Final, #20).
Each configuration is trained for 50 epochs, and we repeat the training for
each configuration eight times (with eight different global seeds). Based on
the final accuracies and training curves, we set the target to 70.00%. The
results of this experiment are presented in Figure 7, Figure 8, and Table 5.
Based on the results, we can see that for this combination of model and
dataset, weight initialization from hyperparameter tuning trials clearly out-

127

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

5 10 15 30 35 HP Final Random

weight initialization policy

43.25

43.50

43.75

44.00

44.25

44.50

44.75

45.00

45.25

b
es

t
ac

cu
ra

cy

Figure 5: Best test accuracy after 200 epochs of training ResNet-18 on
Tiny ImageNet, using different weight initialization configurations.
Numerical values are reported in Table 3.

performs random initialization in terms of both TTA and best test accuracy.

4.7 Further Discussion
Summary of Findings. Overall, our experimental evaluation shows that
for some models and datasets, e.g., ResNet-18 on CIFAR-10 or CIFAR-
100, and InceptionV3 on Food-101, weight initialization using hyperparam-
eter tuning trials can outperform random initialization in terms of time-
to-target-accuracy, as well as best test accuracy. It is also interesting to
note that using weights from a later epoch of the hyperparameter tuning
trial does not necessarily result in a better test accuracy; e.g., we can see in
Figure 2 that initializing the model with weights from epoch #25 result in
the best performance, and better than HP Final.

For ResNet-18 on Tiny ImageNet, and ResNet-152 on CIFAR-100, ran-
dom initialization achieves a higher best test accuracy, but other initial-
izations can achieve better TTAs. One possible reason for this difference
in performance is that for ResNet-18 on Tiny ImageNet, and ResNet-152
on CIFAR-100, our underlying training regimes (irrespective of weight ini-
tialization policy) do not result in a test accuracy in the so-called state-
of-the-art region, which is not the case for ResNet-18 on CIFAR-10 and
CIFAR-100. This can be investigated using further, more thorough exper-
iments; however, we believe our findings from these experiments are inter-
esting enough to motivate further research on this topic.

128

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

65 75 HP Final Random

weight initialization policy

79.9

80.0

80.1

80.2

80.3

80.4

80.5

b
es

t
ac

cu
ra

cy

Figure 6: Best test accuracy after 200 epochs of training ResNet-152 on
CIFAR-100, using different weight initialization configurations. Numerical
values are reported in Table 4.

Storage Requirements. Our modified hyperparameter tuning algorithm,
in its general form, as specified in Algorithm 1, requires that we save the
model weights to storage after each epoch, hence using storage space. When
tuning ResNet-152 on CIFAR-100, the size of each set of weights is 224
Megabytes (MB), so a complete hyperparameter tuning experiment in which
we run 10 trials with 80 epochs each would require 179.2 Gigabytes (GB)
of storage to save all the weights. Saving the weights after each epoch can
become impractical or lead to a bottleneck when tuning considerably larger
models; however, one can always modify the algorithm so that only weights
from specific epochs are saved, e.g., the weights from the final epoch.

129

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

Table 4: Results from the experiments on ResNet-152 and CIFAR-100.
Each trial consists of training the model for 200 epochs. The experiments
for each configuration (row) are repeated with 4 different random seeds
and the average values are reported. The TTA in this table indicates the
first epoch in which the model achieves at least a 75.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 65 80.23±0.189 144.0
Epoch 75 80.168±0.107 143.25

HP Final Epoch 80.072±0.285 142.5
Random (Kaiming + Uniform) 80.372±0.169 143.25

Table 5: Results from the experiments on InceptionV3 and Food-101.
Each trial consists of training the model for 50 epochs. The experiments
for each configuration (row) are repeated with 8 different random seeds
and the average values are reported. The TTA in this table indicates the
first epoch in which the model achieves at least a 70.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 5 74.93±0.115 28.75
Epoch 10 75.935±0.23 23.25
Epoch 15 76.572±0.155 20.5

HP Final Epoch 76.894±0.158 18.375
Random (Kaiming + Uniform) 73.385±1.073 33.875

130

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

5 10 15 HP Final Random

weight initialization policy

72

73

74

75

76

77
b

es
t

ac
cu

ra
cy

Figure 7: Best test accuracy after 50 epochs of training InceptionV3 on
Food-101, using different weight initialization configurations. Numerical
values are reported in Table 5. Training with each configuration was
repeated 8 times.

5 10 15 HP Final Random

weight initialization policy

20

25

30

35

40

ta
rg

et
ac

cu
ra

cy
ep

o
ch

Figure 8: First epoch to reach the target (70%) test accuracy when
training InceptionV3 on Food-101, using different weight initialization
configurations.

131

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

5 Conclusion
In this paper, we proposed a novel weight initialization approach that uses
computation results (i.e., model weights) of the hyperparameter tuning
stage to speed up and enhance the model training stage and evaluated
its performance through a number of experiments on common models and
datasets in the image classification domain. Our main research question
was to understand how to effectively perform weight initialization using
the weights from the hyperparameter tuning stage and how it compares to
the current best practices for weight initialization, in particular, the de-
fault weight initialization in PyTorch. The results of our experiments using
ResNet-18 and ResNet-152 models and CIFAR-10, CIFAR-100, and Tiny
ImageNet datasets show that for some combinations of models and datasets,
weight initialization from hyperparameter tuning trials can outperform ran-
dom initialization in terms of time-to-target-accuracy, while maintaining or
improving the best test accuracy of the learned model.

Our work serves as a starting point in the research direction of reusing
computation results in hyperparameter tuning of DNN models to speed up
the training process after hyperparameter tuning. Based on our empirical
study, we envision that further investigation of our approach can result in
weight initialization approaches that, in turn, lead to possibly faster and
more efficient training pipelines that also train better models. Future work
includes expanding our studies in both theoretical and empirical dimensions
to further understand how to effectively reuse computation results from
hyperparameter tuning. To this end, performing more experiments using
more types of DNN models, datasets, and downstream tasks in different
domains can be an interesting starting point.

References
[1] M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated

machine learning: Methods, systems, challenges, pp. 3–33, 2019.
[2] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-

mization.,” Journal of machine learning research, vol. 13, no. 2, 2012.
[3] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,

“Hyperparameter optimization for machine learning models based on
bayesian optimization,” Journal of Electronic Science and Technology,
vol. 17, no. 1, pp. 26–40, 2019.

[4] L. Li, K. Jamieson, A. Rostamizadeh, et al., “A system for massively
parallel hyperparameter tuning,” Proceedings of Machine Learning
and Systems, vol. 2, pp. 230–246, 2020.

132

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

[5] M. V. Narkhede, P. P. Bartakke, and M. S. Sutaone, “A review on
weight initialization strategies for neural networks,” Artificial intelli-
gence review, vol. 55, no. 1, pp. 291–322, 2022.

[6] D. Arpit, V. Campos, and Y. Bengio, “How to initialize your network?
robust initialization for weightnorm & resnets,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[7] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[9] L. Li, E. Sparks, K. Jamieson, and A. Talwalkar, “Exploiting reuse in
pipeline-aware hyperparameter tuning,” arXiv preprint
arXiv:1903.05176, 2019.

[10] G. Thimm and E. Fiesler, “Neural network initialization,” in From
Natural to Artificial Neural Computation: International Workshop on
Artificial Neural Networks Malaga-Torremolinos, Spain, June 7–9,
1995 Proceedings 3, Springer, 1995, pp. 535–542.

[11] N. Weymaere and J.-P. Martens, “On the initialization and optimiza-
tion of multilayer perceptrons,” IEEE Transactions on Neural Net-
works, vol. 5, no. 5, pp. 738–751, 1994.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[13] G. Li, H. Alnuweiri, Y. Wu, and H. Li, “Acceleration of back prop-
agation through initial weight pre-training with delta rule,” in IEEE
International Conference on neural networks, IEEE, 1993, pp. 580–
585.

[14] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances in neural information pro-
cessing systems, vol. 19, 2006.

[15] T. Le Paine, P. Khorrami, W. Han, and T. S. Huang, “An analysis of
unsupervised pre-training in light of recent advances,” in 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, 2015.

[16] T. H. Trinh, M.-T. Luong, and Q. V. Le, “Selfie: Self-supervised
pretraining for image embedding,” arXiv preprint arXiv:1906.02940,
2019.

133

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

[17] A. Ruiz-Garcia, M. Elshaw, A. Altahhan, and V. Palade, “Stacked
deep convolutional auto-encoders for emotion recognition from facial
expressions,” in 2017 International Joint Conference on Neural Net-
works (IJCNN), IEEE, 2017, pp. 1586–1593.

[18] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algo-
rithms and applications,” arXiv preprint arXiv:2003.05689, 2020.

[19] B. Bischl, M. Binder, M. Lang, et al., “Hyperparameter optimization:
Foundations, algorithms, best practices, and open challenges,” Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 13, no. 2, e1484, 2023.

[20] Y. N. Dauphin and S. Schoenholz, “Metainit: Initializing learning by
learning to initialize,” Advances in Neural Information Processing Sys-
tems, vol. 32, 2019.

[21] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, “Lookahead optimizer: K
steps forward, 1 step back,” Advances in neural information processing
systems, vol. 32, 2019.

[22] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style,
high-performance deep learning library,” Advances in neural informa-
tion processing systems, vol. 32, 2019.

[23] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I.
Stoica, “Tune: A research platform for distributed model selection
and training,” arXiv preprint arXiv:1807.05118, 2018.

[24] P. Moritz, R. Nishihara, S. Wang, et al., “Ray: A distributed frame-
work for emerging {ai} applications,” in 13th USENIX symposium
on operating systems design and implementation (OSDI 18), 2018,
pp. 561–577.

[25] D. Zhuang, X. Zhang, S. Song, and S. Hooker, “Randomness in neural
network training: Characterizing the impact of tooling,” Proceedings
of Machine Learning and Systems, vol. 4, pp. 316–336, 2022.

[26] D. Picard, “Torch. manual_seed (3407) is all you need: On the in-
fluence of random seeds in deep learning architectures for computer
vision,” arXiv preprint arXiv:2109.08203, 2021.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

134

PAPER 5. DNN WEIGHT INITIALIZATION FROM HP TUNING

[29] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 – mining
discriminative components with random forests,” in Computer Vision
– ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Eds., Cham: Springer International Publishing, 2014, pp. 446–461,
isbn: 978-3-319-10599-4.

135

Paper 6

Utilizing Large Language Models for
Ablation Studies in Machine Learning
and Deep Learning

The 5th Workshop on Machine Learning and Systems (EuroMLSys),
co-located with the 20th European Conference on Computer Systems
(EuroSys), 2025

137

Utilizing Large Language Models for
Ablation Studies in Machine Learning and

Deep Learning

Sina Sheikholeslami1, Hamid Ghasemirahni1, Amir H. Payberah1,
Tianze Wang1, Jim Dowling2, and Vladimir Vlassov1

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Hopsworks AB, Stockholm, Sweden

Abstract

In Machine Learning (ML) and Deep Learning (DL) research, ab-
lation studies are typically performed to provide insights into the
individual contribution of different building blocks and compo-
nents of an ML/DL system (e.g., a deep neural network), as well
as to justify that certain additions or modifications to an existing
ML/DL system can result in the proposed improved performance.
Although dedicated frameworks for performing ablation studies
have been introduced in recent years, conducting such experi-
ments is still associated with requiring tedious, redundant work,
typically involving maintaining redundant and mostly-identical
versions of code that correspond to different ablation trials. In-
spired by the recent promising performance of Large Language
Models (LLMs) in the generation and analysis of ML/DL code,
in this paper we discuss the potential of LLMs as facilitators of
ablation study experiments for scientific research projects that
involve or deal with ML and DL models. We first discuss the
different ways in which LLMs can be utilized for ablation studies
and then present the prototype of a tool called AblationMage,
that leverages LLMs to semi-automate the overall process of con-
ducting ablation study experiments. We showcase the usability of
AblationMage as a tool through three experiments, including
one in which we reproduce the ablation studies from a recently
published applied DL paper.

1 Introduction
Deep neural networks (DNNs) are becoming increasingly larger in size and
complexity. In just a decade, the size of practical and popular networks
has grown from around 62 million parameters (AlexNet [1]) to hundreds of

139

PAPER 6. ABLATIONMAGE

billions of parameters (e.g., Megatron-Turing NLG [2], PaLM [3], Falcon [4],
Vision Transformer (ViT) [5], and Llama 3 [6]). Meanwhile, through the
introduction of new architectures and training approaches, different modules
and mechanisms for constructing and training DNNs have become widely
adapted (e.g., inception modules [7], residual connections [8], and multi-
head attention [9]).

A common practice in Machine Learning (ML) and Deep Learning (DL)
research and creating ML/DL systems is to start with an established net-
work architecture (e.g., a Transformer [9]) or training method (e.g., Adam
optimizer [10]) a “baseline” and try to improve that architecture or training
method with regard to specific downstream tasks. The new architecture or
method will then become different from the baseline in terms of the number
of “components” that may have been added to or removed from the baseline.
After that, to evaluate the new architecture or method, its performance on
a number of benchmarks will be compared to that of the baseline as well as
the state-of-the-art.

While such experimental results can be enough to determine the per-
formance of the new architecture/method “as a whole” compared to the
baseline, they may not provide information about the contribution of the
different components of the architecture/method to its performance. To
that end, a simple technique is to perform a systematic experiment known
as ablation study [11], [12]. Essentially, in an ablation study, the changed
components are added/removed from the baseline one by one or in groups,
and the performance of each of these different “configurations” is then com-
pared to the baseline as well as the final architecture/method. This way,
one can reason about the individual contribution of the different added,
removed, or modified components to the overall performance.

However, while performing an ablation study seems to be a straightfor-
ward task, it is still missing from many of the scientific publications in the
various fields that deal with ML/DL. This is partly due to its added cost
and manual effort, as it requires performing extra experiments and main-
taining multiple versions of the code required for defining and training the
different configurations. Although in recent years, dedicated frameworks
for ablation studies in ML/DL have been introduced to address these chal-
lenges [12], [13], many practitioners still choose to either perform ablation
studies manually (e.g., to avoid adding another framework or library to their
project) or forgo them entirely.

Meanwhile, a recent trend in the ML/DL research community is to use
Large Language Models (LLMs) and different prompting techniques to pro-
vide novel solutions or to enhance the existing solutions for various down-
stream tasks [14]–[16]. In particular, LLMs have shown promising results in
neural architecture search [17], [18] and hyperparameter optimization [19]–

140

PAPER 6. ABLATIONMAGE

Large Language Model

Analysis &
Presentation

Execution

Suggestion 1:

Suggestion 2:
…
Suggestion N:

Interactive
Code Annotator

(Annotated)
ML/DL System
Source Code

Extra
Documents

Dataset
Properties

AblationMage
Correctness Feedback

Prompt
Manager

Annotation
Extractor

User

User

Figure 1: Overview of AblationMage.

[21]. Considering that the training data for the leading publicly available
LLMs includes a large corpus of codes and documents related to DNN train-
ing available on the web, LLMs have shown good potential in generating
sound and relevant code for different ML/DL stages and tasks [22].

Contributions: Motivated by these efforts, we (i) investigate how
LLMs can be leveraged for performing ablation experiments, specifically by
helping in the design of the ablation study, generating correct and coherent
artifacts for performing the ablation trials, and analyzing and presenting
the results. We then (ii) introduce AblationMage, a tool that leverages
an LLM to semi-automate the process of conducting ablation studies in
ML/DL. Finally, we (iii) evaluate the usability of AblationMage using
three examples related to common scenarios related to ablation studies. To
the best of our knowledge, AblationMage is the first LLM-based dedi-
cated tool for automating and conducting ablation study experiments.

2 AblationMage
We now discuss the prototype implementation of AblationMage, a reusable
and customizable tool for ablation experiments1. An overview of Abla-
tionMage is shown in Figure 1. AblationMage receives the original or
annotated source code of the system alongside any other documentation,
such as dataset properties or the related research paper, as the input. It
can then provide suggestions for annotations related to trials (if the code
does not have any annotations), and the user can modify and verify them.
The annotated code is then analyzed to find and extract the associated
code snippets. Then, a full prompt is generated by AblationMage, and

1The source code of AblationMage and results from the experiments will be released
upon acceptance of the paper.

141

PAPER 6. ABLATIONMAGE

an LLM will be queried. We refer to this as the first call.
The response of the LLM will include the executable source code(s), in-

structions for conducting the trials, description of added trials, and any code
added for analysis and presentation. Once the user executes the provided
code(s), in case there are any errors or issues related to the correctness,
they can use AblationMage to perform a follow-up call, which prompts
the LLM to fix the specific issues. The user can repeat this process until
desired artifacts are created. Example prompts and LLM responses for each
of these types of calls (first or follow-up call) can be found in the Appendix.

Currently, AblationMage supports two types of annotations: explicit
annotations and hint annotations. Explicit annotations require the user
to explicitly annotate the lines of code that may correspond to ablation
trials. This is particularly useful for model/layer ablation trials, and the
users can add “#ABLATABLE_COMPONENT” as comments to the lines of code
that correspond to adding different layers to a model (see Listing 1 as an
example). The users can also provide hint annotations, which are natural
language descriptions of the desired ablation trials that are added in the
form of comment blocks before related parts of the code (e.g., one might
place a hint annotation before the definition of a function that creates a
model, as shown in Listing 3).

Depending on how sophisticated the original implementation (base code)
is, the LLM might still be able to “understand” the logic of the base code and
help in both the design and implementation of the ablation trials without
any explicit annotations or correct placement of hint annotations; however,
the LLMs seem to benefit from documentation and code comments in code
understanding [23].

AblationMage is implemented in Python and uses HuggingFace’s Chat
Templates to communicate with LLMs. The current version supports the
OpenAI and Anthropic APIs, but it can be easily extended to support
other standard LLM APIs. Next, we will evaluate the usability of Abla-
tionMage while using Claude Sonnet 3.5 as the LLM backend.

3 AblationMage
We now discuss the prototype implementation of AblationMage, a reusable
and customizable tool for ablation experiments. An overview of Ablation-
Mage is shown in Figure 1. AblationMage receives the original or an-
notated source code of the system alongside any other documentation, such
as dataset properties or the related research paper, as the input. It can
then provide suggestions for annotations related to trials (if the code does
not have any annotations), and the user can modify and verify them. The
annotated code is then analyzed to find and extract the associated code

142

PAPER 6. ABLATIONMAGE

snippets. Then, a full prompt is generated, and an LLM backend will be
queried in a first call.

The response of the LLM will include the executable source code(s), in-
structions for conducting the trials, description of added trials, and any code
added for analysis and presentation. Once the user executes the provided
code(s), in case there are any errors or issues related to the correctness,
they can use AblationMage to perform a follow-up call, which prompts
the LLM to fix the specific issues. The user can repeat this process until
desired artifacts are created. Example prompts and LLM responses for each
of these types of calls can be found in the Appendix.

Currently, AblationMage supports two types of annotations: explicit
annotations and hint annotations. Explicit annotations require the user
to explicitly annotate the lines of code that may correspond to ablation
trials. This is particularly useful for model/layer ablation trials, and the
users can add “#ABLATABLE_COMPONENT” as comments to the lines of code
that correspond to adding different layers to a model (see Listing 1 as an
example). The users can also provide hint annotations, which are natural
language descriptions of the desired ablation trials that are added in the
form of comment blocks before related parts of the code (e.g., one might
place a hint annotation before the definition of a function that creates a
model, as shown in Listing 3).

Depending on how sophisticated the original implementation (base code)
is, the LLM might still be able to “understand” the logic of the base code and
help in both the design and implementation of the ablation trials without
any explicit annotations or correct placement of hint annotations; however,
the LLMs seem to benefit from documentation and code comments in code
understanding [23].

AblationMage is implemented in Python and uses HuggingFace’s Chat
Templates to communicate with LLMs. The current version supports the
OpenAI and Anthropic APIs, but it can be easily extended to support
other standard LLM APIs. Next, we will evaluate the usability of Abla-
tionMage while using Claude Sonnet 3.5 as the LLM backend.

4 Evaluation & Discussion
To evaluate the usability of our prototype implementation of Ablation-
Mage, we conduct three experiments: in the first experiment, we use Ab-
lationMage to generate code for an ablation study of a few layers of a
Convolutional Neural Network (CNN) trained on the CIFAR-10 dataset,
where we annotate the lines of code that correspond to defining the layers
of the CNN with #ABLATABLE_COMPONENT comments. In the second exper-
iment, we try to reproduce the ablation studies mentioned in a recently

143

PAPER 6. ABLATIONMAGE

Listing 1 Annotating specific lines of the original code to specify ablation
trials (explicit annotation).
...
class CIFAR10CNN (nn. Module):

def __init__ (self):
super (CIFAR10CNN , self). __init__ ()
self. conv1 = nn. Conv2d (3, 32, kernel_size =3, padding =1)
self. conv2 = nn. Conv2d (32 , 64, kernel_size =3, padding =1) # ABLATABLE_COMPONENT
self. conv3 = nn. Conv2d (64 , 128 , kernel_size =3, padding =1)
self.pool = nn. MaxPool2d (2, 2)
self.fc1 = nn. Linear (128 * 4 * 4, 512) # ABLATABLE_COMPONENT
self.fc2 = nn. Linear (512 , 10)
self. dropout = nn. Dropout (0.5)

def forward (self , x):
x = self.pool(F.relu(self. conv1 (x)))

...

Listing 2 First call to an LLM using AblationMage.
python ablationmage .py first -call -a anthropic -m claude -3-5- sonnet -20241022

published paper [24]. In the aforementioned paper, the authors discuss an
ablation study in their manuscript and have made their code repository
publicly available. However, the said repository does not contain the code
related to their ablation studies. We are interested to see if we can use
AblationMage to generate the code to perform the ablation studies given
the original implementation by the authors. Finally, in the third exper-
iment, we use AblationMage for a feature ablation study of the Higgs
Boson Machine Learning Challenge dataset [25] when used for training an
XGBoost [26] classifier.

4.1 Experiment 1: Layer Ablation of a CNN
For this experiment, we start with a typical PyTorch code that trains a sim-
ple CNN on the CIFAR-10 dataset. We are interested in performing a layer
ablation experiment, in which the goal is to study the relative contribution
of a convolutional layer (conv2) as well as a fully connected layer (fc1).
To this end, we annotate the model creation code lines corresponding to
those layers with #ABLATABLE_COMPONENT comments. Listing 1 shows the
annotated code of the model creation function.

The next step is to pass this annotated code to AblationMage, and
wait for it to initiate an API Call to an LLM and return the results (this
corresponds to the first call as discussed in the previous section). Listing 1
shows how to initiate a first call. The user can expect to receive the response
after a few seconds. The response is returned in the form of a text file
containing both the full versions of the modified source file(s), as well as
instructions on how to run the ablation study, an overview of the changes

144

PAPER 6. ABLATIONMAGE

made to the original source code, as well as additional notes, e.g., regarding
the plots or how to interpret possible results.

We take the portion of the result that corresponds to the full source code
for the ablation study to replace the original source code, and we run it.
The baseline trial executes successfully, but the script fails when trying to
execute the first layer ablation trial. Upon looking at the error logs and the
stack trace, we realize this is due to the fact that when the layer is removed,
the input of its following layer should be modified to match the output of
the preceding layer. We paste the relevant parts of the stack trace in a
file called output_result.txt and then use AblationMage to initiate a
follow-up call.

The follow-up call is made similarly to the first call, but instead of the
original source file(s), it requires the path to the new source file(s) - which
we just executed - as well as the path to output_result.txt. The response
to the follow-up call also comes in a similar format to the response to the
first call. Upon replacing the source code(s) with the new version of the
code and attempting the execution, the full ablation study experiment runs
without a problem. The output of running the study includes several plots
that can be used to compare the baseline and the different ablation trials,
as well as a JSON file that includes the raw results of all the trials. We
hence conclude that AblationMage can be used as an aid in conducting
ablation study experiments.

4.2 Experiment 2: Reproducing the Ablation Studies
of a Research Paper

We now consider a different scenario: conducting an ablation study on a
paper or code authored by other researchers. In cases where authors include
an ablation study in their paper, they may or may not provide the code
needed to reproduce it. We aim to evaluate whether AblationMage can
assist in such situations, specifically when an original implementation is
available for a research paper that discusses an ablation study, but the code
to reproduce the study is unavailable.

We take [24] as a relevant example of this case among the papers we
had recently read. In the aforementioned paper, the authors propose an
approach using Graph Representation Learning to automate the triage of
emergency patients, i.e., to classify each patient’s emergency treatment con-
dition. As part of their system, they use a model based on GraphSAGE [27]
as one of the possible classifiers. Since the model based on GraphSAGE
showed the best performance among the different classifiers, they performed
an ablation study on the relative contribution of the different layers of the
model to the classification accuracy on the test set. They report their results

145

PAPER 6. ABLATIONMAGE

Listing 3 Example of a hint annotation for model ablation.
...
ABLATION_HINT_START
The ablation study should consist of the following layer ablation trials on GraphSAGE :
- the second layer removed
- the third layer removed
- the fourth layer removed
- the second , third , and fourth layers removed , while the number of output neurons of the first layer is 8
- the second , third , and fourth layers removed , while the number of output neurons of the first layer is 64
ABLATION_HINT_END

class GraphSAGE (torch .nn. Module):
def __init__ (self , dim_in , dim_out):

...

and discuss the outcome of the different trials; however, their implementa-
tion on their publicly available repository does not contain the code for
conducting the ablation study.

We add a description of the desired ablation trials in the form of a hint
annotation and add it before the place in the code where the model is de-
fined. Listing 3 shows the annotation we added to the original source code.
Upon providing the source code to AblationMage, the response from the
first call got the correct implementation of different trials, but it missed an
import of a required module. This required a simple, one-liner fix and could
be done by the user, but nevertheless, we made a follow-up call with Abla-
tionMage, and the output contained the missing import statement. The
main part of the code was correct, and the trials were executed successfully,
but there was an error related to the results visualization code that was
added by the LLM. Again, this was something that could be fixed easily,
but we used another follow-up call, and the final code was executed without
any errors. We were able to replicate the study as described by the authors
and witness mostly similar results. We further confirmed the correctness of
the generated code by comparing it with the ablation study code provided
by the authors of the original article upon our request.

4.3 Experiment 3: Feature Ablation of the Higgs Bo-
son Challenge Dataset

We now look at another component of an ML/DL system that may ben-
efit from ablation study experiments: the dataset used for training the
model. Depending on the type and modality of the data, the examples
within a dataset can have several ablatable dimensions (and in a multi-
modal datasets, modalities themselves can be ablated), but perhaps the
most typical type of data ablation is feature ablation. In a feature ablation
study, we remove individual (or groups of) features (e.g., channels in an
image, or columns in a tabular dataset) from the training dataset, train the

146

PAPER 6. ABLATIONMAGE

Listing 4 Example of a hint annotation for feature ablation.
...
def main ():

data = pd. read_csv ('training .csv ')

ABLATION_HINT_START
The ablation study should consist of the following feature ablation trials :
- remove ' DER_mass_MMC '
- remove ' DER_mass_transverse_met_lep '
- remove ' DER_mass_vis '
- remove 'DER_pt_h '
- remove ' DER_deltaeta_jet_jet '
- remove ' DER_mass_jet_jet '
- remove pairs of the above features , one pair at a time
ABLATION_HINT_END

data['Label '] = data['Label ']. map ({ 's': 1, 'b': 0})
...

same model on each variation of the dataset, and examine the difference
in the performance of the model. This simple examination can provide us
with useful information on the importance of different dataset features.

To demonstrate the capability of AblationMage for data ablation
studies, we perform a feature ablation study on the Higgs Boson ML Chal-
lenge Dataset [25], a well-known tabular dataset. The training data consists
of 250000 particle collision events, and we want to train an XGBoost classi-
fier to determine whether a collision event is a signal, or background noise.
Each event has an ID column, 30 feature columns, a weight column, and a
label column. The test set comprises 550000 events with an ID and 30 fea-
ture columns. We are interested to know about the individual and pairwise
importance of 6 of the features to the performance of the classifier trained
on the dataset.

We add a description of the desired ablation trials as a hint annotation
and add it immediately after the line of code in which we load the training
dataset. Listing 4 shows the annotation we added to the original source
code. Upon providing the source code to AblationMage, the response
from the first call gets the correct implementation required to execute all
the trials.

4.4 Discussion
The results of these experiments verify the usability and potential of Abla-
tionMage as a tool to semi-automate the design and execution of ablation
studies. Regarding the possibility of full automation, although LLMs have
shown promising performance in generating ML/DL code, the users should
still verify the correctness of the generated codes to make sure they corre-
spond exactly to the target ablation study experiments. That being said,
a natural next step for improving AblationMage would be to provide

147

PAPER 6. ABLATIONMAGE

more automation for the correctness/verification loop, possibly eliminating
or reducing the need for multiple executions of possibly faulty code, e.g., by
detecting and fixing common errors through static code analysis [28], [29].

Another possible challenge stems from the limited maximum number of
input and output tokens and the limited context length of current LLMs [30].
This, in particular, may make it challenging for LLMs to understand and/or
modify multiple source files simultaneously, especially in cases where the
ML/DL system implementation spans many files and possibly hundreds of
thousands of lines of code. This challenge can be alleviated by providing
more sophisticated annotations and asking the LLM to provide experimen-
tation code for the ablation trials one at a time. This may also ensure that
the context length growth stays within the context length of the current
publicly available LLMs such as GPT, Claude, and DeepSeek. This is par-
ticularly possible for code generation and code understanding tasks related
to ablation studies, since the trials in an ablation study are intrinsically
independent of each other (i.e., each trial can be generated and performed
independently of the others). Nevertheless, we should also note the rapid
improvement of LLMs in this regard; e.g., OpenAI’s recent o3-mini model
has a context window of 200K tokens and can have 100K tokens in its out-
puts, showing a remarkable increase compared to GPT-4’s 8192-token con-
text window and maximum output size. These improvements can enable
LLMs to assist users with much more complex ablation studies. Our tests
of AblationMage on code repositories of complex DL frameworks and
systems, while using more than a hundred source and documentation files
as input documents, show that LLMs can successfully analyze and generate
the desired code.

Limitations of existing dedicated ablation study frameworks (AutoAbla-
tion [12] and ABLATOR [13]) compared to utilizing state-of-the-art LLMs
for conducting ablation studies include their dependence on their developers
for implementing and providing support for different ML and DL frame-
works, and the initial investment and learning curve required to learn their
workflows, which might not be justified for smaller or simpler projects. We
predict that as more users adopt LLM-based tools for their coding tasks [31],
using LLM-based tools such as AblationMage for conducting ablation
studies will also become more common.

A natural extension to AblationMage would be to provide full au-
tomation using agentic frameworks such as LangGraph [32] and AutoGen [33].
By leveraging these frameworks, a complete ablation study workflow can be
structured as interactions among multiple specialized agents (e.g., for code
generation and optimization, experiment execution, and result analysis),
each potentially utilizing different LLMs and iterating over generated arti-
facts and outputs (such as errors and stack traces) until a desired outcome

148

PAPER 6. ABLATIONMAGE

I'll help you create a modified version of the script that
implements the ablation study for the GraphSAGE layers.
The study will test different architectures by removing
layers and varying the number of neurons. Here's the
complete modified code with ablation study capabilities:
```python 
…..

LLM Agent Response

…..

if model_config['type'] == 'full':

  self.sage1 = SAGEConv(dim_in, 64, aggr='max')

  self.sage2 = SAGEConv(64, 32, aggr='max')

  self.sage3 = SAGEConv(32, 16, aggr='mean')

  self.sage4 = SAGEConv(16, 8, aggr='max')

  self.sage5 = SAGEConv(8, dim_out, aggr='max')

elif model_config['type'] == 'no_layer2':

  self.sage1 = SAGEConv(dim_in, 64, aggr='max')

  self.sage3 = SAGEConv(64, 16, aggr='mean')

  self.sage4 = SAGEConv(16, 8, aggr='max')

  self.sage5 = SAGEConv(8, dim_out, aggr='max')

You are assisting me in creating code for ablation studies. I'm going to 
give you a runnable and correct script that trains a machine learning 
model. In the script, there may be lines that have a comment in the form 
of: #ABLATABLE_COMPONENT, These are related to ablation studies. 
Also, they might be comment blocks that start with 
#ABLATION_HINT_START and end with #ABLATION_HINT_END, these 
contain a description of the desired ablation study. When you see lines 
that have #ABLATABLE_COMPONENT or blocks of commented out lines 
enclosed in #ABLATION_HINT_START and #ABLATION_HINT_END, modify 
the original script in such a way that the mentioned component is 
removed but the code is still runnable and correct.
...

Annotated Source Code Additional Documents

System Prompt

Attached Files:

Figure 2: The prompt prepared by AblationMage for the “first call” to
the LLM and part of the response. The user provides the path to the
annotated source code and other documents.

is achieved. Meanwhile, a human-in-the-loop can validate artifacts and
provide high-quality guidance for complex tasks, ensuring correctness and
refining the workflow as needed.

5 Summary
In this paper, we investigated the potential of LLMs as aids for perform-
ing ablation studies in ML/DL. We highlighted a number of ways in which
LLMs can be a facilitator for ablation studies, in the different steps of
study design, experimentation, and analysis & presentation, and discussed
the prototype implementation of AblationMage, an LLM-based tool that
can semi-automate the process of conducting an ablation study by exploit-
ing explicit and hint annotations provided by the users. Using three ex-
periments, including one in which we reproduced the ablation studies of
a recently published paper, we evaluated the usability of AblationMage
and briefly reviewed its current challenges and possible extensions.

Appendix: Example Prompts and LLM Re-
sponses
Here we provide examples of the prompts that AblationMage creates as
well as the responses from Claude Sonnet 3.5, the LLM backend we used
for our experimental evaluation. These prompts and responses correspond
to the second experiment, in which we reproduced the ablation studies of
a recently published paper by adding hint annotations to the original code.

149



PAPER 6. ABLATIONMAGE

I added two important imports at the beginning of the file:

```python
from torch_geometric.nn import SAGEConv
import torch.nn.functional as F
```
These imports are necessary because:

1. `SAGEConv` is the GraphSAGE convolution layer implementation 
from PyTorch Geometric

2. `F` contains various functions like `relu()`, `dropout()`, and 
`log_softmax()` that we use in the modelThe rest of the code remains 
the same. This should now run without the `NameError` you 
encountered.

Previously, I asked you to output a script based on some requirements, 
but it failed to run successfully. I will give you the script you provided, as 
well as the stack trace of errors or any other error message outputted 
from running that script. Try to fix it, and provide the full code (not only 
hints for modifications, but the full code) in response.

Previously executed source code Feedback / Error Output

Attached Files:

System Prompt

LLM Agent Response

Figure 3: The prompt prepared by AblationMage for the “follow-up
call” to the LLM and part of the response.

The prompts and snippets of the responses for the first call are shown in
Figure 2, while Figure 3 shows the same for the first follow-up call Ab-
lationMage makes. In this case, the “Feedback/Error Output” was the
stack trace of errors after the execution of the code provided by the LLM
in response to the first call.

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-

tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012.

[2] S. Smith, M. Patwary, B. Norick, et al., “Using deepspeed and mega-
tron to train megatron-turing nlg 530b, a large-scale generative lan-
guage model,” arXiv preprint arXiv:2201.11990, 2022.

[3] A. Chowdhery, S. Narang, J. Devlin, et al., “Palm: Scaling language
modeling with pathways,” Journal of Machine Learning Research,
vol. 24, no. 240, pp. 1–113, 2023.

[4] G. Penedo, Q. Malartic, D. Hesslow, et al., “The refinedweb dataset
for falcon llm: Outperforming curated corpora with web data, and
web data only,” arXiv preprint arXiv:2306.01116, 2023.

[5] M. Dehghani, J. Djolonga, B. Mustafa, et al., “Scaling vision trans-
formers to 22 billion parameters,” in International Conference on Ma-
chine Learning, PMLR, 2023, pp. 7480–7512.

[6] A. Dubey, A. Jauhri, A. Pandey, et al., “The llama 3 herd of models,”
arXiv preprint arXiv:2407.21783, 2024.

[7] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

150



PAPER 6. ABLATIONMAGE

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[9] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, et al., Eds., vol. 30, Curran Associates,
Inc., 2017.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv e-prints, arXiv–1412, 2014.

[11] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation studies
in artificial neural networks,” arXiv preprint arXiv:1901.08644, 2019.

[12] S. Sheikholeslami, M. Meister, T. Wang, A. H. Payberah, V. Vlassov,
and J. Dowling, “Autoablation: Automated parallel ablation studies
for deep learning,” in Proceedings of the 1st Workshop on Machine
Learning and Systems, 2021, pp. 55–61.

[13] I. Fostiropoulos and L. Itti, “Ablator: Robust horizontal-scaling of
machine learning ablation experiments,” in International Conference
on Automated Machine Learning, PMLR, 2023, pp. 19–1.

[14] J. Wang, Z. Liu, L. Zhao, et al., “Review of large vision models and
visual prompt engineering,” Meta-Radiology, p. 100 047, 2023.

[15] K. Tanahashi, Y. Inoue, Y. Yamaguchi, et al., “Evaluation of large
language models for decision making in autonomous driving,” arXiv
preprint arXiv:2312.06351, 2023.

[16] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans,
“Foundation models for decision making: Problems, methods, and op-
portunities,” arXiv preprint arXiv:2303.04129, 2023.

[17] G. Jawahar, M. Abdul-Mageed, L. V. Lakshmanan, and D. Ding, “Llm
performance predictors are good initializers for architecture search,”
arXiv preprint arXiv:2310.16712, 2023.

[18] A. Chen, D. Dohan, and D. So, “Evoprompting: Language models for
code-level neural architecture search,” Advances in Neural Informa-
tion Processing Systems, 2023.

[19] M. R. Zhang, N. Desai, J. Bae, J. Lorraine, and J. Ba, “Using large
language models for hyperparameter optimization,” arXiv e-prints,
arXiv–2312, 2023.

[20] S. Liu, C. Gao, and Y. Li, “Large language model agent for hyper-
parameter optimization,” arXiv preprint arXiv:2402.01881, 2024.

151



PAPER 6. ABLATIONMAGE

[21] H. Ghasemirahni, A. Farshin, M. Scazzariello, M. Chiesa, and D.
Kostić, “Deploying stateful network functions efficiently using large
language models,” in Proceedings of the 4th Workshop on Machine
Learning and Systems, 2024, pp. 28–38.

[22] J. Xu, J. Li, Z. Liu, et al., “Large language models synergize with
automated machine learning,” Transactions on Machine Learning Re-
search, 2024, issn: 2835-8856. [Online]. Available: https://openreview.
net/forum?id=RDEaIfOiJM.

[23] D. Song, H. Guo, Y. Zhou, et al., “Code needs comments: Enhanc-
ing code LLMs with comment augmentation,” in Findings of the As-
sociation for Computational Linguistics: ACL 2024, L.-W. Ku, A.
Martins, and V. Srikumar, Eds., Bangkok, Thailand: Association for
Computational Linguistics, Aug. 2024, pp. 13 640–13 656. doi: 10.
18653 / v1 / 2024 . findings - acl . 809. [Online]. Available: https :
//aclanthology.org/2024.findings-acl.809.

[24] A. Defilippo, P. Veltri, P. Lió, and P. H. Guzzi, “Leveraging graph
neural networks for supporting automatic triage of patients,” Scien-
tific Reports, vol. 14, no. 1, p. 12 548, 2024.

[25] C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl, and
D. Rousseau, “The higgs boson machine learning challenge,” in NIPS
2014 workshop on high-energy physics and machine learning, PMLR,
2015, pp. 19–55.

[26] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[27] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[28] P. Louridas, “Static code analysis,” Ieee Software, vol. 23, no. 4,
pp. 58–61, 2006.

[29] X. Guan and C. Treude, “Enhancing source code representations for
deep learning with static analysis,” in Proceedings of the 32nd IEEE/ACM
International Conference on Program Comprehension, 2024, pp. 64–
68.

[30] H. Jin, X. Han, J. Yang, et al., “Llm maybe longlm: Self-extend llm
context window without tuning,” arXiv preprint arXiv:2401.01325,
2024.

[31] D. Zheng, Y. Wang, E. Shi, H. Zhang, and Z. Zheng, “How well do
llms generate code for different application domains? benchmark and
evaluation,” arXiv preprint arXiv:2412.18573, 2024.

152



PAPER 6. ABLATIONMAGE

[32] LangChain-AI, LangGraph, https://github.com/langchain-ai/
langgraph, Accessed: 2025-02-09, 2025.

[33] Q. Wu, G. Bansal, J. Zhang, et al., “Autogen: Enabling next-gen llm
applications via multi-agent conversation framework,” arXiv preprint
arXiv:2308.08155, 2023.

153




	I Thesis Overview
	Introduction
	Research Objectives and Challenges
	Thesis Contributions
	Research Methodology
	Sustainability and Social Aspects
	Publications
	Software
	Dissertation Organization

	Background and Related Work
	Machine Learning Systems
	Machine Learning Pipelines
	Hyperparameter Tuning and Optimization
	Weight Initialization Techniques
	Distributed Model Training
	Ablation Studies
	Machine Learning Tools and Frameworks

	Summary of Appended Papers
	Conclusions and Future Work
	Dissertation Summary
	Broader Impact
	Future Work

	Bibliography

	II Appended Papers

