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Abstract—In wood science, accurate segmentation of non-
cellular elements in microscopy images is critical for assessing
wood quality and understanding growth patterns. Yet, it is
challenging due to the complex morphology of wood components.
This work explores the development of a semi-supervised deep
learning model for segmenting non-cellular elements in wood
microscopy images of Norway spruce, an essential source for
construction materials in Europe, addressing the challenge of
manual annotation’s labor intensity and expertise requirement.
The segmentation model employs advanced deep learning archi-
tectures, including Convolutional Neural Networks and a Vision
Transformer, to capture the intrinsic patterns embedded in wood
structures. We proposed a Pixel-level Guided Mean-Teacher (PG-
MT) framework as an improvement to the Mean-Teacher semi-
supervised learning technique. Our framework enables pixel-
level guided correction to enhance segmentation accuracy and
model robustness with limited labeled datasets. Our experimental
evaluations show that the proposed PG-MT framework improved
the Dice score for medullary ray segmentation by 0.95% and
the IoU score by 1.14% over the Uncertainty-Aware Mean-
Teacher (UA-MT) framework. Additionally, the integration with
laboratory instruments emphasizes the model’s effectiveness in
accurately estimating cross-sectional cell wall thickness, demon-
strating a strong correlation with X-ray measurements. This
result validates the model’s practical applicability in laboratory
settings, enhancing the analysis of wood properties. This work
provides a robust semi-supervised DL framework for segmenting
non-cellular elements in wood microscopy images, significantly
reducing the annotation burden and paving the way for more
automated and precise wood property analysis.

Index Terms—Computer vision, Deep learning, Microscopy
image segmentation, Semi-supervised learning, Mean Teacher,
Wood Science

I. INTRODUCTION

Understanding the intricate structure of wood is crucial

across scientific and industrial domains, from material science

to forestry and wood processing. Accurately identifying and

analyzing wood components in microscopy images is chal-

lenging due to their complex morphology, necessitating precise
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segmentation tools. Evaluating wood and fiber characteristics

in laboratory settings involves examining samples to assess

properties such as density and wall thickness, providing valu-

able insights into wood quality and variability. Precise segmen-

tation tools enhance wood analysis, aiding in revealing growth

patterns, identifying defects, and optimizing processing tech-

niques. Accurately identifying wood’s microscopic structures,

including cellular and non-cellular elements, is essential for

improving material performance and developing new products.

While methods like StarDist [1] segment cellular components

effectively, few focus on non-cellular elements. Traditionally,

segmenting these elements has been a manual task prone to

human error.

In recent years, Machine Learning (ML) and Deep Learning

(DL) have emerged as promising approaches for the automated

segmentation of complex structures in microscopy images.

Convolutional Neural Networks (CNNs) have shown remark-

able success in various image segmentation tasks by learning

hierarchical representations directly from raw data [2], [3].

In wood microscopy images, DL-based methods offer sig-

nificant advantages in effectiveness, precision, and robustness

over traditional approaches. These models can learn intricate

patterns in wood structures without needing handcrafted fea-

tures or extensive preprocessing. However, image labeling for

training DL models is time-consuming and requires expertise,

posing a challenge to developing accurate models. Using semi-

supervised learning to leverage unlabeled images can reduce

the cost and effort of data annotation.

Based on the challenges in the previous works, this paper

addresses the following research questions: Can DL models

effectively automate the segmentation of non-cellular elements

in wood microscopy images? Can semi-supervised learning

improve segmentation performance with limited labeled im-

ages by effectively using unlabeled images?

The main contributions of this paper are as follows:

• We selected, implemented, and evaluated a Deep Learn-

ing model for precise segmentation of non-cellular ele-

ments in wood microscopy images.

• We designed the PG-MT (Pixel-level Guided Mean-

Teacher) framework, a semi-supervised learning frame-



work for wood microscopy image segmentation with bet-

ter performance than the baseline UA-MT (Uncertainty-

Aware Mean-Teacher) framework.

• We applied the proposed model to image-only cell wall

thickness estimation, which proved its practicability to

broader application scenarios.

The remainder of the paper is structured as follows: Sec-

tion II reviews the background and related work on semantic

segmentation in botanical and wood microscopy, labeled data

challenges, and the potential of semi-supervised learning to

improve performance. Section III describes the datasets, data

preparation, and model selection. Section IV outlines the deep

learning model implementations, including model parameters,

loss functions, and a sliding window post-processing technique

for generating segmentation maps on high-resolution wood

microscopy images. Section V compares model performance,

examines training methods, evaluates post-processing, and

assesses cell wall thickness estimation accuracy. Section VI

concludes with a summary and future work.

II. BACKGROUND AND RELATED WORK

Semantic segmentation has applications across various sci-

entific disciplines, including medical image analysis, environ-

mental sciences, material science, and agricultural research [4].

In botanical studies, Ergun [5] applied the U-Net model

to segment rays in wood microscopy images. A study on

Arabidopsis thaliana used deep learning to segment hypocotyl

sections for tissue morphogenesis analysis [6]. Another study

introduced a large-scale microscopy dataset of potato tubers,

enabling precise cell microstructure assessment with CNNs

and semantic segmentation [7]. Similarly, research on Japanese

hardwoods combines polarized optical microscopy with deep

learning to analyze wood cell anatomy and cellulose microfib-

ril angle [8]. CNNs have also been used to segment wood

structures from micro-X-ray tomography, aiding the study of

mechanical properties and moisture swelling [9].

Supervised DL methods rely on an abundance of labeled

data for training a well-performing model. However, in many

domains, such as medical image analysis, the acquisition of la-

beled data is usually quite expensive and time-consuming [10],

[11]. Semi-supervised learning [12] can alleviate this challenge

by utilizing both labeled and unlabeled samples.

Mean Teacher is a well-known framework in semi-super-

vised learning [13]. In [14], a confidence-aware mean teacher

scheme was proposed. The confidence-aware module learns

under the guidance of the true class probability, appended

after the segmentation network. For unlabeled images, the

confidence is used to regularize the consistency loss between

teacher and student prediction in a finer level, by giving

unconfident pixels less weights.

In [15], probability mask map segmentation and signed dis-

tance map regression tasks are jointly learned. Segmentation

mask and distance map can easily transform to each other by

customized sigmoid function. However, the limitation of this

method is that it may only be applicable on images whose

segmentation boundaries are mostly smooth and regular, oth-

erwise the distance map may mislead the training.

The semi-supervised methods can be used in microscopy

image segmentation. In the work of Dawoud et al., a semi-

supervised method was proposed to enhance cell segmentation

in microscopy images [16]. This method significantly im-

proved the model’s performance by leveraging unlabeled data

through edge detection tasks, even when only a few labeled

examples were available.

The successful application of semi-supervised learning in

tasks where the labeled data are scarce, in particular in the

medical image analysis domain, indicates that it is possible

to apply this approach to wood microscopy image analysis,

where the same labeled/annotated data scarcity problems hold.

By blending both labeled and unlabeled data, this approach

enhances model generalization, resting on foundational as-

sumptions like smoothness and low density to ensure effective

learning from limited annotations.

III. METHOD

A. Data Preparation and Split

The data we are concerned with in this work are a subset

from a dataset of 8170 microscopy image samples of Norway

spruce (Picea abies). Each spruce image sample, collected with

the SilviScan cell scanner, is in a size of 1392× 1040 pixels

with a bit depth of 16. Figure 1 demonstrates one sample

image. Initially, 250 raw spruce samples are selected randomly

from 8170 spruce samples available in the dataset.

Fig. 1: Spruce sample collected with SilviScan image analyzer.

After removing images with large stains, poor lighting,

or focus issues, 113 samples were retained for annotation

as training and validation sets for the DL model. For each

selected sample, a 256×256-pixel patch is randomly cropped

to match the requirements of the model interface (see Figure

2). Annotation is done using the ISAT-SAM tool [17]. The

set is then split into training (93 samples) and validation (20

samples) folds, with 5 distinct random seeds used to create

varied training and validation set configurations.

Across the 5 training folds, background pixels average

63.42±0.39%, cell wall pixels 33.60±0.36%, and medullary

ray pixels only 2.98±0.06%, indicating an imbalance in class

proportions in the dataset.

An additional dataset is used for cell wall thickness es-

timation. It includes 50 stitched images, making a whole

spruce sample from pith to bark, and CSV data containing



Cell walls

Medullary rays

Fig. 2: A sample 256 × 256 image patch with corresponding

annotation. The green pixels represent cell wall structure,

while the red pixels represent medullary ray structure.

the average cell wall thickness every 0.025mm at the cross

section measured using the SilviScan method [18].

B. DL Model Selection and Justification

Three candidate frameworks, U-Net [19], Attention U-Net

[20] and TransUNet [21] are used for training on annotated

images for fully supervised learning.

1) U-Net: Known for its efficiency and effectiveness, espe-

cially in medical imaging with limited data. Its simple

CNN architecture is well-suited for datasets with a

distinct semantic structure and serves as a baseline for

model comparisons.

2) Attention U-Net: Enhances U-Net with an attention

gate at the skip connection, helping the model focus

on relevant regions and ignore irrelevant ones, making

it effective for noisy or complex images.

3) TransUNet: Incorporates a Transformer as the encoder,

capturing global context, and follows the U-Net struc-

ture for precise segmentation. The Transformer’s ability

to capture long-range dependencies may lead to more

accurate segmentation.

The core of the semi-supervised training framework used

in this work is Mean-Teacher [13], in which the student

learns from labeled data, and the teacher is the Exponential

Moving Average (EMA) of the student, constrained by an

additional consistency loss. We propose Pixel-level Guided

Mean-Teacher (PG-MT), which adds a guidance module to

generate a pixel-level guidance map that helps refine the

segmentation model’s prediction. Figure 3 shows an overview

of PG-MT.

During training, the framework does not compute the

consistency loss directly from the segmentation maps gen-

erated by the teacher and student models. Instead, it uses

the guidance map created by the guidance module to in-

struct the segmentation backbone on which pixels have been

mispredicted. This approach helps prevent scenarios where

the teacher model might provide incorrect guidance to the

student model, preventing model deterioration in terms of

segmentation performance.

The guidance module, as shown in Figure 4, is an isolated

module independent from the segmentation backbone. It takes

the segmentation map and image feature representation as
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Fig. 3: An overview of the PG-MT framework.
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Fig. 4: Schematics of the guidance module.

input to capture the embedded information in both the image

and the model, in order to provide progressive auto-correction

guidance. The Atrous Spatial Pyramid Pooling (ASPP) module

takes advantage of dilated convolution, which helps better

capture the information with different receptive fields. The

attention gate incorporates the image embedding to provide a

deeper level of guidance. Finally, a sigmoid function is applied

at the end of the module to produce a guidance map.

The guidance map, matching the segmentation map’s spatial

dimensions with an additional channel, indicates desired pixel

classifications and correctness. The extra channel, when ac-

tivated, preserves the segmentation; otherwise, updates occur

based on a probability threshold pth.

The semi-supervised framework’s total loss (1) comprises

supervised segmentation loss (a hybrid of focal [22] and Dice

losses), guidance loss, and consistency loss. The segmentation

model is trained using paired labeled data.

L = λsegLseg + λguideLguide + λconsLcons (1)

The guidance module is trained in a supervised fashion,

where a paired data consisting of an segmentation map/image

embedding and a consistency map is used as input and

output. A consistency map is generated by simply comparing

the segmentation map and the ground truth. Suppose in the

original segmentation task, there are C semantic classes in

total. Then the consistency map can be expressed as:

mcons[i, j] =

{

gt[i, j], if mseg[i, j] ̸= gt[i, j]

C + 1, if mseg[i, j] = gt[i, j]
(2)



The guidance map generation task can be converted to a

C+1-class classification task. Here, a weighted cross-entropy

loss, as seen in (3), is used in the guidance loss because most

pixels are valued C + 1, which means most segmentation

is right. Therefore, the weight given to this class should

be reduced properly, otherwise the module will give biased

prediction towards this C + 1-th class to reduce loss.

Lguide = LW−CE(mguide,mcons) (3)

In the PG-MT framework, the consistency loss is influenced

by a guidance map generated by the guidance module. This

modifies the vanilla MT, where only the teacher’s prediction

was considered. If the guidance map strongly believes in its

corrected class prediction, it will create a new segmentation

map based on this correction, using (4).

m′

seg[i, j] =











argmaxmguide[i, j], if argmaxmguide[i, j] ̸= C + 1

and maxmguide[i, j] ≥ pth

mseg[i, j], otherwise
(4)

Apart from providing guidance to the segmentation task,

the guidance map can also serve as a confidence term in the

final consistency loss. The term mguide[i, j] is a C +1-length

vector. Therefore, the value mguide[i, j, c] can be regarded as

the confidence of the correction of class c at pixel (i, j).
The consistency loss is a weighted average of the cross-

entropy loss between two slightly different segmentation maps:

Lcons = ms

guide · LCE(mseg,m
′

seg) (5)

Besides, for the hyperparameter before the consistency loss

λcons, a Gaussian ramp-up function is utilized to increase the

proportion of consistency loss from 0 to 1, to alleviate the

wrong guidance of unlabeled data at the early stage of training

[13]. The Gaussian ramp-up function is expressed as:

λcons = λcons−max · exp(−β(1− t/T )2) (6)

where β is a tunable hyperparameter that controls the shape of

the Gaussian curve, and t and T represent the current training

step and the total number of steps, respectively.

Specifically, the baseline Mean-Teacher used in this work

is the Uncertainty-Aware Mean-Teacher (UA-MT) framework,

which is proposed by Yu et al. for semi-supervised left atrium

segmentatation [23]. It uses an uncertainty-aware loss. In order

to prevent unreliable prediction produced by the teacher model

from disturbing the learning process, the prediction with high

uncertainty will be given less weight in the consistency loss.

The uncertainty simply follows the definition of entropy, which

measures the degree of disorder in the probability distribution:

u = −

C∑

c

pc logpc/ logC (7)

where C represents the number of classes, p denotes the

probability of prediction, and logC serves as a scaling factor

that normalizes uncertainty within the range of 0 to 1.

Then the uncertainty map is applied to the original consis-

tency loss to produce a weighted average:

Lcons =

∑

i
1(ui < H)||f ′

i
− fi||2

∑

i
1(ui < H)

(8)

where f ′

i
and fi are prediction of the teacher model and

student model, respectively, 1 is the indicator function and H

is the threshold of uncertainty.

IV. IMPLEMENTATION

The U-Net and Attention U-Net models were built from

scratch [19], [24]. U-Net uses feature map resolutions of

[256, 128, 64, 32] and feature channels of [64, 128, 256, 512],
with two convolution operations (kernel size 3), batch nor-

malization [25], and ReLU activation at each layer. Attention

U-Net adds an attention gate with a resampler, utilizing

bilinear upsampling with a scale factor of 2 for improved

localization. TransUNet integrates a Vision Transformer (ViT)

in the encoder, using a pre-trained DeiT-small model [26],

pre-trained on ImageNet-1k [27], with a patch size of 16 and

embedding dimension of 384. A dropout layer (0.3 probability)

is included to prevent overfitting.

The supervised loss Lseg combines focal loss (λ1 = 0.7)

and Dice loss (λ2 = 0.3). For focal loss, the class weights

are α = 0.25 for background, α = 0.75 for cell walls, and

α = 1.0 for medullary rays, with a focusing parameter γ = 2.0
to address class imbalance.

For both UA-MT and PG-MT frameworks, the maximum

consistency loss weight λcons is capped at 0.1, while the

guidance loss weight λguide in the pixel-level guided version

is increased to 2.

In the UA-MT framework, the uncertainty threshold H

gradually increases from 0.25 to 0.75 throughout training,

following the Gaussian ramp-up function in (6). In the PG-

MT framework, the weighted cross-entropy loss for guidance

as shown in (3) assigns class weights of [1, 1, 1, 0.2], reducing

the weight for the C + 1-th class to avoid biased predictions.

The smoothing factor s in the consistency loss (5) is set at

1.5 to moderate the influence of uncertain guidance, and the

correction probability threshold pth is set at 0.7. The ramp-up

function coefficient β in (6) is set to 5. The teacher’s model

uses a smoothing coefficient α of 0.99.

Since the current DL model produces segmentation maps

for 256×256 images, it can’t directly handle higher-resolution

images. This section introduces a simple post-processing ap-

proach to generate a universal segmentation map for wood

microscopy images of any size.

The post-processing procedure can be dissected into three

steps (see Figure 5):

1) Sliding Window Implementation: Begin by applying

a 256x256 pixel sliding window to traverse the original

high-resolution image. This window extracts segments

of the image sequentially, allowing localized processing

on each segment to generate predictions.

2) Aggregating Overlapping Predictions: As the sliding

windows overlap, each pixel will generally appear in

multiple windows and have multiple predictions. To



address this, calculate a weighted average of the pre-

dictions for each pixel across the overlapping windows.

Ensure the overlap amount is less than 256; a recom-

mended value is 100.

3) Weight Distribution for Smoother Transitions: Assign

a higher weight to predictions from the central region of

each window compared to those closer to the edges. This

approach prioritizes the most reliable part of each win-

dow’s prediction, reducing discontinuities and artifacts

at the boundaries between window segments, resulting

in smoother transitions in the final composite image.

*

*

Overlapping

Weighted

Segmentation

Fig. 5: Illustration of image post-processing procedure on a

larger size image.

To demonstrate the impact of the sliding window boundaries

on the robustness of predictions, the weight matrix is designed

such that the weights in the center are larger and decrease

towards the edges. The weights are proportionally distributed

based on the distance from the center of the window to its

four corners. The specific expression is as follows:

W [i][j] = max

(

1−
√

(i− h/2)2 + (j − h/2)2

h/
√
2

, 0.001

)

(9)

V. RESULTS AND ANALYSIS

The performance of the three candidate DL models, U-

Net, Attention U-Net, and TransUNet, are compared com-

prehensively using fully supervised training. Based on the

comparison results, a proper model will be chosen as the

segmentation model in the later semi-supervised training to

obtain the best possible experimental performance. All training

procedures are repeated 3 times with different random seeds on

the same configuration to ensure the reliability of the results.

Table I presents the segmentation results using the afore-

mentioned methods. Each method is assessed in terms of

average Dice score and IoU score over 5 validation sets,

and the scores are provided for the weighted average (Avg.),

cell wall, and medullary ray segments. Adaptive Thresholding

(A.T.) is an example of a traditional image analysis method.

The results in Table I are consistent with the visual-

ized segmentation results as shown in Figure 6: Traditional

method is not comparable to DL-based methods in wood mi-

croscopy image segmentation. Considering all metrics, Tran-

sUNet achieves the best average performance across the 5

TABLE I: Comparison of segmentation result of different

supervised methods and adaptive thresholding (A.T.).

Method
Dice Score IoU Score

Avg. Cell Wall Ray Avg. Cell Wall Ray

A.T. / 0.8115 / / 0.6830 /

U-Net 0.8617 0.8888 0.7580 0.7655 0.8000 0.6106
A. U-Net 0.8711 0.8982 0.7714 0.7794 0.8152 0.6280

TransUNet 0.8747 0.9017 0.7761 0.7849 0.8210 0.6344

validation sets and will be selected for subsequent experiments

on semisupervised training.

Image 1 Image 2 Image 3

Original

Input

Ground

Truth

Adaptive

Thresholding

U-Net

Attention

U-Net

TransUNet

Fig. 6: Visualization of segmentation result by different meth-

ods. The adaptive thresholding method is only able to segment

cell walls. TransUNet provides the most precise segmentation.

To demonstrate the performance of semi-supervised meth-

ods over purely supervised methods in the absence of sufficient

labeled data, three groups of experiments are carried out: (i)

supervised training using only 20% labeled data, (ii) UA-MT

with a mix of 20% labeled and 80% unlabeled data, and (iii)

applying PG-MT under the same data conditions. The results

of the experiments are presented in Table II.

TABLE II: Comparison of segmentation result of supervised

(Sup.) and semi-supervised training methods.

Method
Dice Score IoU Score

Avg. Cell Wall Ray Avg. Cell Wall Ray

Sup. (20%) 0.8342 0.8818 0.6861 0.7301 0.7886 0.5229

UA-MT (20%) 0.8525 0.8911 0.7218 0.7546 0.8036 0.5656
PG-MT (20%) 0.8546 0.8906 0.7313 0.7568 0.8028 0.5770

Sup. (100%) 0.8747 0.9017 0.7761 0.7849 0.8210 0.6344



The quantitative results in II show that, with the same

amount of labeled data, the performance of the two Mean-

Teacher frameworks improves significantly with additional

unlabeled images compared to fully supervised methods. This

indicates that, when labeling time is limited, incorporating raw

unlabeled data in training can enhance performance, saving

time and labor costs, though a gap exists compared to fully

supervised training with all labeled images.

Between two Mean-Teacher frameworks, it can be observed

that PG-MT has better performance. The advantage of PG-MT

comes from its better segmentation in medullary ray structure.

As mentioned before, it is because the guidance module is able

to provide a finer level of correction, which corrects wrong

pixels to medullary ray pixels.

Image 1 Image 2 Image 3

Original

Input

Ground

Truth

Supervised

(20% labeled)

UA-MT

(20% labeled)

PG-MT

(20% labeled)

Supervised

(100% labeled)

Fig. 7: Visualization of segmentation result using supervised

and semi-supervised methods.

Looking at Figure 7, the model trained with only 20%

labeled data in a supervised approach appears to have some

inaccuracies and wrongly identifies lots of air bubbles as

cell walls, which indicates that the model may suffer from

insufficient training data so that it is overfitted. UA-MT

framework alleviates the issue of overfitting by introducing the

information of unlabeled data to the training procedure. The

result shows a better alignment with the ground truth compared

to the fully supervised model trained on the same amount

of labeled data. Similarly, PG-MT framework also improves

the segmentation quality with less noisy prediction. In Image

1, the segmentation of medullary ray is in higher accuracy,

probably owing to the guidance module’s ability to correct the

prediction at a pixel to a specific class. However, in general,

there is a limited improvement over the UA-MT framework

since medullary rays in Image 3 are still not identified.

To better understand the behavior of the guidance module

in the PG-MT framework, the produced guidance map is

visualized in Figure 8, with consistency map as comparison.

mguide of
Image 1,
500th step.

mcons of
Image 1,
500th step.

mguide of
Image 1,
1000th step.

mcons of
Image 1,
1000th step.

mguide of
Image 2,
500th step.

mcons of
Image 2,
500th step.

mguide of
Image 2,
1000th step.

mcons of
Image 2,
1000th step.

mguide of
Image 3,
500th step.

mcons of
Image 3,
500th step.

mguide of
Image 3,
1000th step.

mcons of
Image 3,
1000th step.

Fig. 8: Evolution of guidance and consistency maps in pixel-

level guided Mean-Teacher framework throughout the training

process. Yellow pixels indicate correct prediction; other colors

represent guidance of correction for corresponding classes.

Figure 8 shows that the guidance module adapts to the

evolving consistency map during training, ultimately iden-

tifying most pixels as “correct”. However, two limitations

persist: (i) corrections focus mainly on cell boundaries, often

neglecting errors within cells, and (ii) the guidance map quality

depends on labeled data, as evidenced by the absence of

medullary ray predictions throughout training. This suggests

both the segmentation model and guidance module may lack

understanding of certain patterns.

To further evaluate our proposed method, we apply the

previously mentioned models and methods to large-sized wood

microscopy images. The goal is to estimate the thickness of

the cell walls in the cross-sections, which will then be com-

pared with ground truth measurements obtained from X-ray

techniques. This allows for a comparison of the performance

of different models/methods.

Figure 9 and Figure 10 demonstrate the comparison of

predicted segmentation with/without post-processing. In Fig-

ure 10, there are discontinuities in the segmentation of the

medullary ray regions. The proposed post-processing methods

effectively address this issue by combining the predictions

of multiple overlapping windows for a single pixel using



Fig. 9: Segmentation of image in Fig. 1 with post-processing.

Fig. 10: Segmentation of image in Fig. 1 without post-

processing. Segmentation of medullary ray is discontinuous.

a sliding window and a weight matrix. This process also

considers the continuity of the image, thereby producing

reliable segmentation results. Also, the application of this post-

processing technique allows DL models to perform larger-

scale tasks, especially for the subsequent cell wall thickness

estimation experiments.
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Fig. 11: Estimation of cell wall thickness along the cross

section of stitched image #1 by different methods.

Figure 11 shows cell wall thickness estimation along a

stitched image’s cross-section. The traditional image analysis

method deviates significantly from the ground truth, making

it unsuitable compared to DL-based methods. While all DL

models provide similar estimates, the red and purple curves

align more closely with the ground truth than the green curve,

indicating that Attention U-Net and TransUNet perform best.

Figure 12 compares the performance of different meth-

ods/models using a box plot. DL models outperform the adap-

tive threshold method in segmentation precision, with a slight

performance gap between Attention U-Net and TransUNet.
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Fig. 12: Pearson correlation between the estimations and

ground truth for the cell wall thickness estimation task.

Similar analysis can also be conducted for comparison

between supervised methods and semi-supervised methods.

Figure 13 demonstrates estimation of cell wall thickness using

semi-supervised methods.
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Fig. 13: Estimation of cell wall thickness along the cross

section of stitched image #1 using semi-supervised methods.

It can be observed that when lacking labeled data, the esti-

mation of cell wall thickness deviates from the ground truth,

having a performance gap between the fully labeled situation.

And it is also clear that two semi-supervised frameworks are

reducing this gap by utilizing information of unlabeled images.

Figure 14 compares the performance between the supervised

and semi-supervised methods using box plot.

It is interesting to see in 14, both two semi-supervised meth-

ods have improvement over supervised method, but there’s

no significant difference between the two. The reason is that

Pearson correlation only focuses on the trend of variation of

thickness along the path, it is not sensitive to minor changes

in individual wrongly-classified pixels.
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Fig. 14: Pearson correlation between the estimations and

ground truth for the cell wall thickness estimation task.

VI. CONCLUSION AND FUTURE WORK

This work tackles the automation of segmenting of non-

cellular elements in wood microscopy images by integrating

DL models with semi-supervised learning techniques. Exper-

iments with Norway spruce datasets demonstrate the effec-

tiveness of the developed DL models in enhancing wood cell

analysis, highlighting their real-world relevance and impact

in wood science. Key to these results was the use of ad-

vanced DL architectures like TransUNet and the Mean-Teacher

framework. We propose a Pixel-level Guided Mean-Teacher

(PG-MT) framework to improve segmentation accuracy and

model robustness with limited labeled datasets. The semi-

supervised learning component effectively leveraged unlabeled

data, enhancing model performance and generalization to

unseen images, reducing reliance on extensive labeled datasets

and lowering annotation costs. In conclusion, integrating DL

architectures with semi-supervised learning techniques im-

proves segmentation accuracy and efficiency, enhancing wood

science research without needing large annotated datasets.

Future work should expand the dataset to include more

wood species beyond Norway spruce, enhancing model ro-

bustness and generalizability. Improving annotation quality

and consistency through a standardized protocol or multiple

annotators is also essential to reduce bias. Additionally, inte-

grating data from different measurement techniques, such as

combining X-ray density measurements with image analysis,

could improve segmentation accuracy, deepen understanding

of wood properties, and address technological limitations by

providing additional contextual information.
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