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Abstract—This work aims to explore the use of machine
learning techniques, particularly clustering and cluster evolution
tracking, to analyze travel patterns in public transportation in
a city and provide valuable insights for urban transit planning
and optimization. Clustering involves identifying and grouping
similar objects, such as passengers with different ticket types,
and distinguishing them from dissimilar objects in other groups.
Over time, groups can change, so tracking this change can
provide more detailed and valuable insights than analyzing
data in aggregates. Clustering and cluster evolution tracking
can reveal groups of passengers that are more or less affected
by changes such as seasonality or fare increases. We propose
a framework called DUGET (Dynamic User Grouping and
Evolution Tracking), which clusters anonymized users based
on their ticket choices and temporal travel patterns using a
multi-step approach. The clusters are then tracked over time
using Jaccard similarity based on memberships, allowing for the
analysis and visualization of changes. Our experiments using a
real-world public transportation dataset collected in Stockholm,
Sweden, show the feasibility of tracking change over time in
public transportation by examining passenger behavior as a
temporal aggregate. The framework we propose is generalizable
and can be used for future projects to understand trends in
groups of objects.

Index Terms—Smart card data, Temporal patterns, Clustering,
Customer Segmentation, Transportation, Jaccard similarity

I. INTRODUCTION

The rapid advancement of data collection and storage tech-

nologies has unlocked new possibilities in analyzing public

transportation systems [1] [2]. With automated systems cap-

turing millions of trips daily, decision-makers can now refine

services by leveraging detailed insights into user behavior

[3]. These insights are crucial for optimizing transit services

by improving routes, reducing wait times, and balancing

accuracy with the increased computational costs of handling

larger, more complex data [4]. While the availability of such

vast datasets presents significant opportunities, it also brings

challenges, particularly in translating this wealth of data into

actionable knowledge. One such trend is the emergence of new

approaches to clustering users based on varying definitions of

behavior [3]. Understanding the dynamics of user groups over

time is particularly challenging, as static analyses often fail

to capture the temporal variations critical for effective transit

planning [5] [6].

In the domain of public transportation, clustering techniques

have long been employed to uncover patterns in travel behavior

[7]. Static clustering methods, like k-means, are easy to imple-

ment and ideal for initial segmentation, providing a snapshot

of how different user groups utilize transit services [7] [8].

However, a significant limitation of these approaches is their

static nature—they typically analyze data from a single point

in time and do not account for how segments evolve, especially

in response to external factors such as fare changes, seasonal

variations, or policy shifts [7] [9]. This limitation can lead to

a superficial understanding of user behavior, missing out on

critical insights into the temporal dynamics that are essential

for making informed decisions.

Recent advancements have introduced dynamic clustering

methods that incorporate time as a dimension in the analysis

process [10]. These methods aim to capture the evolution of

user groups, offering a more accurate representation of the

changing landscape of public transportation usage. Clustering

using more advanced data may provide deeper insights, but

it often comes with increased computational complexity and

resource demands [8]. The need for sophisticated algorithms

and significant computational power can be a barrier to the

widespread adoption of these methods, and sampling is utilized

to help mitigate this [10].

This paper addresses these challenges by introducing the

Dynamic User Grouping and Evolution Tracking (DUGET)

framework, a novel data mining approach designed to analyze

temporal travel patterns and monitor the evolution of user

groups in public transportation systems. DUGET integrates

traditional and advanced clustering techniques, including k-

means++ clustering, Hierarchical Agglomerative Clustering

(HAC), and cluster tracking, to provide a comprehensive

view of user behavior over time. The evolution of clusters

is tracked using Jaccard similarity based on memberships,

enabling detailed analysis and visualization of changes.



While DUGET offers significant advantages in capturing

temporal dynamics and providing detailed user behavior in-

sights, its computational complexity is an important consid-

eration. The k-means++ algorithm, with its linear scalability

relative to the number of users and clusters, provides an

efficient foundation for large-scale data. However, the sub-

sequent use of Hierarchical Agglomerative Clustering (HAC),

with its cubic time complexity, presents higher computational

demands when scaling to datasets with millions of users. To

address this, DUGET has been designed to balance accuracy

and computational feasibility. The initial clustering phase

effectively reduces the dataset’s dimensionality, making the

HAC step more manageable and allowing DUGET to provide

richer, dynamic insights while remaining scalable for large

urban transportation systems.

The practical utility of DUGET is demonstrated through

its application to real-world data from Stockholm’s public

transportation system. The dataset, provided by the Transport

Administration Region Stockholm, the public authority re-

sponsible for coordinating and managing public transportation

services in the Stockholm region, encompasses millions of

trips recorded over several years, providing a robust test case

for the framework. By identifying stable user groups and

tracking dynamic shifts, DUGET provides actionable insights

that can be applied to optimize transit services. For example,

the framework revealed significant changes in user behavior

during the summer months, highlighting the sensitivity of

certain segments to temporal factors. Unlike static methods,

DUGET offers a more responsive understanding of user be-

havior, making it a valuable tool for urban transit planning.

While previous studies in public transportation analysis

have explored various clustering techniques to segment user

behavior, there remains a significant gap in methodologies

that effectively integrate temporal dynamics into the analysis.

For instance, Cats et al. utilized longitudinal smart card

data to model user behavior, employing a two-step clustering

approach that combined k-means with HAC [11]. Although

their work successfully captured distinct user segments, it was

constrained by the static nature of the clustering, which failed

to account for how these segments evolved over time. This

limitation restricts the ability to observe and respond to shifts

in user behavior, particularly when external factors such as

fare changes or service adjustments come into play. Similarly,

Agard et al. introduced a novel distance metric for clustering

temporal sequences of trips, highlighting the importance of

considering temporal patterns. However, their approach also

revealed challenges in scalability, particularly when applied to

large-scale datasets typical of urban transit systems [12].

Building on previous clustering approaches, Truong et al.

[13] investigated passenger flow patterns using hierarchical

clustering combined with principal component analysis (PCA)

to uncover latent trends across stations based on timestamps.

This method allowed them to observe recurring daily patterns,

such as morning and afternoon peaks and highlighted the

functional distinctions between different station types [13].

However, their analysis was constrained by the aggregated

and fully anonymized nature of the data, which limited the

ability to dynamically track individual commuter patterns

over time. In contrast, DUGET leverages pseudo-anonymized

data, enabling a more granular and continuous tracking of

commuter behaviors. This distinction allows DUGET not only

to identify clusters but also to monitor how these user groups

evolve in response to temporal and external factors, such as

seasonal changes or fare adjustments, offering a more robust

and responsive approach to understanding public transit usage

dynamics.

In contrast, DUGET offers a more sophisticated and dy-

namic approach by integrating manual segmentation with

dynamic clustering and cluster tracking, specifically designed

for the complexities of large-scale public transportation data.

Tracking of evolving clusters can showcase segments appear-

ing, disappearing, and how clusters change with time [14].

What sets DUGET apart is its innovative use of Jaccard

similarity to track clusters over time, providing a robust and

quantitative measure of how user groups evolve in response to

various factors. Unlike the static methods employed by Cats et

al. [11], DUGET’s ability to monitor temporal changes allows

for a more responsive and adaptive understanding of user

behavior. For example, our application of DUGET to Stock-

holm’s public transportation data revealed significant shifts

in user groups during fare changes and seasonal transitions,

which static clustering methods would have missed.

In summary, this paper presents a robust and scalable frame-

work for analyzing the temporal dynamics of user behavior in

public transportation systems. By leveraging both traditional

and advanced clustering techniques, DUGET provides deep

insights into how user groups change over time, offering valu-

able guidance for improving transit services and addressing

the needs of diverse user groups. The application of this

framework to real data from Stockholm’s public transportation

system underscores its practical relevance and potential for

broader applicability in urban transit planning.

II. METHOD

The methodology aimed to investigate changes in different

user groups by leveraging machine learning, in particular clus-

tering techniques, to categorize users based on their temporal

travel patterns. The analysis focused on size variations, cluster

membership shifts, and average behavioral changes in each

segment, influenced by factors such as seasonal variation and

the fare increase in January 2024.

The proposed framework encompassed data collection and

preprocessing, data analysis, clustering, cluster tracking, and

change quantification. Figure 1 outlines the key steps, which

include collecting data from specified time periods/bins, trans-

forming it into object representations, normalizing the data,

and sampling users, primarily from those shared across peri-

ods, for Jaccard similarity to track clusters over time.

In short, objects were grouped and clustered in a multi-

step process using k-means and hierarchical agglomerative

clustering. These final clusters were matched and tracked over

time using Jaccard similarity based on the unique identifiers



Fig. 1: Overview of the Methodological Framework

connected to cards used by travelers in Stockholm. The final

step involved quantifying changes, allowing for visualization

and comparison of data from different periods for the final

clusters. The following sections will delve into each of these

steps in greater detail, providing a comprehensive under-

standing of the methods used. This framework we dubbed

”Dynamic User Grouping and Evolution Tracking” (DUGET).

For more details on the DUGET framework refer to [15].

A. Data Description

The dataset used covers real trips made by real users

in the region of Stockholm, Sweden during the period of

2022 up until (but not including) February 2024. Region

Stockholm’s relational database is automatically filled through

their automated system which collects data in real time where

each new trip initiated creates new records. When a card/ticket

is used (also known as a tap-in), data such as the location,

time and date, mode of transportation, and type of ticket are

all recorded and linked to the CardKey, which is a unique

identifier connecting trips to one entity.

The dataset is built up of three main tables along

with several dimension tables. The primary tables relate to

cards/tickets/users, trips, and journeys (one or multiple linked

trips). These tables tracked information, such as first and

last usage, and detailed all trips/journeys linked to a single

CardKey, allowing for easy calculation of the number of

trips/journeys a user has made in any given period. Data

collected included the start and end stations, as well as

the time and distance of each journey, along with various

other dimensions. Example columns and their data, showing

coordinates, timestamps, and locations, are shown in Figure 2.

Fig. 2: Data columns showing start time, start point, start

coordinates, end time, and end point of a set of trips

Trips can be linked together into journeys. A journey is

simply one or multiple trips taking place close together in

terms of time, where it is assumed that they are part of the

same activity, such as a transfer, if the timing is right. These

trips can often have the out station inferred by looking at the

next trip made, but this destination is not inherently tracked

within this automated system where tickets are only scanned

upon entry.

The entire dataset tracks trips and journeys made between

the end of 2022 and January 2024. On average, roughly

2,000,000 distinct users travel during a week, with roughly

700,000 distinct users during a single weekday. Around two

million trips were made during an average day in November.

Strong patterns in temporal travel can be observed, most

of which are intuitively understood. For instance, one such

pattern during weekdays includes two peaks corresponding

to morning and afternoon rush hours, illustrating common

commuter behavior as depicted in Figure 3.

Fig. 3: Hourly patterns for all Weekdays for Journey made

during the month of May 2023

B. Data Preprocessing

The smart card data from Stockholm’s public transportation

network, covering November 2022 to January 2024, contains

timestamped records of user trips, including trip start time,

mode of transportation, and station coordinates. To ensure

privacy, the data is anonymized, with each user represented

by a unique identifier linked solely to their travel behavior.

In the preprocessing stage, data was retrieved from an Azure

data lake using PySpark and SQL queries. The dataset included

four time periods (each 28 consecutive days), starting in

November 2022, January 2023, November 2023, and January

2024. Each period had an equal number of weekdays to

simplify comparative analysis.

To balance dataset size with analysis efficiency, temporal

aggregation was applied, grouping journeys into hourly inter-

vals. This reduced computational load while preserving key

travel patterns. Hourly intervals were defined as Night (0-4),

Morning (5-9), Day (10-14), Afternoon (15-18), and Evening

(19-23).

Users were categorized into ticket types—Period, Tourist,

School, or Single—based on the first ticket type used during



the period. This allowed for a simplified and efficient analysis

of travel behavior across both time and user groups.

C. User Representation

With data from the selected periods preprocessed, journeys

were aggregated so each row contained all data related to a

single CardKey, assumed to represent one user. This aggre-

gation encompassed all journeys made by a user during the

period, capturing the temporal aspects of these journeys. The

profiles created encoded the day of the week and time of day

into features such as Monday Morning and Tuesday Evening,

summing all journeys made by that CardKey for each time

slice and day of the week as visualized in Figure 4

Fig. 4: Initial Columns of User Representation Data

Each user profile was assigned a single ticket category based

on the first ticket type used during the observed time period.

This approach simplified the analysis and mitigated potential

complexities arising from users holding multiple ticket types.

Attempts to determine the most frequently used ticket category

were found to be computationally inefficient, increasing the

processing time by over 160%, from 3 minutes to more than

8 minutes. The number of users in each of the four categories

is visualized in Table I and Table II.

TABLE I: Number of Users in Each Ticket Category Across

Multiple Months

Category November 2022 January 2023 April 2023 November 2023 January 2024

Period 553,000 529,000 538,000 551,000 389,000
Tourist 55,000 42,000 61,000 55,000 22,000
School 165,000 162,000 174,000 183,000 176,000
Single 1,528,000 1,405,000 1,438,000 1,477,000 612,000

Users with fewer than four journeys during the specified

time period were removed, under the assumption that repre-

senting true patterns for these users would be difficult. To

accommodate the diverse requirements of clustering algo-

rithms, particularly those sensitive to scale and distribution,

normalization was applied so that each row was summed to

one. This was achieved by dividing each column by the sum

of all columns.

TABLE II: Number of Users in Each Ticket Category After

Filtering Users with Fewer Than Four Journeys

Category November 2022 January 2023 November 2023 January 2024

Period 520,000 513,000 534,000 235,000
Tourist 38,000 29,000 41,000 13,000
School 156,000 150,000 169,000 161,000
Single 571,000 522,000 556,000 187,000

D. Clustering Pipeline

Using temporal profiles to represent user behavior, a multi-

step clustering approach was applied, integrating both domain

knowledge and statistical techniques. Initially, users were

divided into four manual groups based on ticket categories:

Period, Tourist, School, and Single, with each user assigned

to one category per period. These manual groups were then in-

dependently clustered using k-means++. The resulting clusters

were consolidated into a single dataset, and further reduced

in number through additional clustering using hierarchical

agglomerative clustering (HAC), resulting in a final set of

temporal profiles that captured behavior across all ticket cate-

gories.

The Sankey plot in Figure 5 shows the full clustering

process with the initial manual grouping of users, followed by

clustering within each category using the k-means algorithm.

The final stage depicts how HAC combines these clusters

across all ticket categories to form the final set of clusters

that are randomly named.

Fig. 5: Flow of User Grouping and Clustering Process

1) Manual Segmentation: The temporal profiles represent-

ing user behavior were divided into groups based on the

defined ticket categories: Period, Tourist, School, and Single.

These categories simplify multiple ticket types into broader

groups. ’Period tickets’ refer to those valid for 30 days

or longer. ’School tickets’ are used by elementary school

students. The ’single tickets’ group covers tickets intended for

one-time use; multiple single tickets are still associated with

the same CardKey, as is the case when switching to another

ticket type. ’Tourist tickets’ are primarily intended for tourists

and are valid for 24 hours to seven days. These groups could be

further reduced into full price and reduced tickets to separate

university students and the elderly from adults.

To balance the dataset, users were sampled based on their

presence in both examined time periods (November and the

following January). This method reduced computational re-

source demands and ensured a balanced representation of

different ticket groups, preventing any single group from

dominating the sample. In cases where the number of users

traveling in both periods was insufficient, additional users

were randomly sampled from the remaining population to

achieve a predetermined percentage of total users within each



ticket category. While this random sampling may reduce the

Jaccard similarity between periods, it allows for the inclusion

of more data, such as tourist users who may not travel

consistently across both periods. This approach ensures a more

comprehensive analysis while maintaining the ability to track

consistent users. To preserve the integrity of the user matching

process, the sampled rows were sorted by CardKeys to align

with existing data.”

2) Clustering Technique: The cluster analysis in this study

aimed to dissect the multifaceted nature of public trans-

portation usage by examining user data. After users were

sampled from each ticket category and the manual groups were

created, k-means++ clustering was applied. K-means excels at

partitioning data into distinct clusters and scales efficiently

compared to algorithms such as DBSCAN or hierarchical

techniques. The initial seeding technique of k-means++, where

initial centers are placed further apart with a probability

proportional to the distance to the nearest point, was employed

to reduce the risk of finding only local optima.

The number of clusters must be specified beforehand. To

determine this, the within-cluster sum-of-squares (WCSS)

and the elbow method were utilized. WCSS measures the

similarity of objects within a cluster, offering insights into

cluster cohesion. The elbow method helps identify the optimal

number of clusters by indicating the point where adding more

clusters does not significantly improve overall tightness. This

technique balances the mathematical goodness of the number

of clusters with having a manageable set of distinct and robust

groups to analyze.

WCSS was applied to each manual group containing only

temporal profiles for each of the ticket categories, producing

elbow plots for the range of 1 to 20 clusters. From this, k-

means was applied to each of the groups using a k around the

elbow of these plots, with different k values for each category.

These clusters were then renamed based on the ticket category,

as the labels are randomly assigned by the k-means algorithm.

The final groups after k-means were labeled, for example,

Period 1, Tourist 1, Tourist 2, etc.

This clustering approach aimed to uncover underlying pat-

terns and segments within the data, facilitating a deeper

understanding of user behavior. By grouping different ticket

types separately, it examined the variance within these groups

without being influenced by other ticket categories.

3) Regrouping and Refinement: After identifying subgroups

using k-means++ for all four ticket categories, the next step

was to refine these clusters to capture more complex patterns

and produce a final set of meaningful clusters representing user

behavior. All clusters were combined into a single dataframe,

relabeled from all four ticket categories.

Initially, the approach successfully captured variance and

distinct temporal patterns within each ticket category. To

further enhance the analysis, hierarchical agglomerative clus-

tering (HAC) was applied. This method allowed for the

exploration of similarities among different ticket types and the

capture of intricate temporal profiles, using Ward linkage to

ensure the formation of compact and coherent clusters. HAC

was applied by calculating the centroids, pairwise distances

between user profiles and current centroids, and iteratively

merging clusters until a given threshold was reached.

First, centroids representing the mean of all current clusters

were computed. Pairwise distances between user profiles and

these centroids were calculated using Euclidean distance, the

required distance metric for Ward linkage. The clustering

process proceeded iteratively with Ward linkage, where at each

step, the most similar clusters were merged, and distances were

recalculated based on the new clusters formed. This iterative

process continued until the desired number of clusters was

obtained. Ward linkage minimizes the increase in the sum of

squares within clusters, ensuring compactness.

To determine the optimal number of clusters, a dendrogram

was constructed from an initial clustering run. This dendro-

gram as seen in 6 and 7 visually illustrated how clusters

merged from the initial set down to a single cluster, guiding

the selection of the optimal number of clusters. The goal was

to maintain distinct patterns without consolidating all users

into a single large cluster. Emphasis was placed on combining

groups with similar temporal profiles to create a final set of

clusters that effectively captured the diversity of user behaviors

without losing granularity.

Fig. 6: Combined Dendrograms for All Ticket Categories in

November 2022

The hierarchical clustering process resulted in a flat set

of clusters using Ward linkage, ensuring that the identified

clusters were both cohesive and representative of distinct

patterns in temporal travel preferences among users. These

clusters are randomly labeled between 1 and n by HAC, where

n is the number of final clusters.

This approach not only refined the initial cluster assign-

ments from k-means++ but also enhanced the interpretability

and utility of the clustering results in analyzing and under-

standing user behaviors in public transportation.

E. Clustering Tracking

To understand how users change over time, it was important

to correctly track groups of users. Since groups were labeled at



Fig. 7: Combined Dendrograms for All Ticket Categories in

January 2023

random using Hierarchical Agglomerative Clustering (HAC),

the final groups produced for period one and period two

had varying names. All clusters were matched using Jaccard

similarity on the CardKey, and clusters in period two were

relabeled to match the best corresponding clusters from period

one. This approach allowed for evaluating size changes, exam-

ining how CardKeys migrated between groups, and describing

changes in temporal patterns between clusters. The following

pipeline was proposed to understand how specific groups

changed their behavior over time.

1) Label Matching: To track changes in clusters across

different periods, we employed a method of relabeling based

on the Jaccard similarity of CardKeys between clusters from

period one (P1) and period two (P2). Temporal profiles were

created and clustered using k-means and HAC, with labels

randomly assigned to all clusters for November and January

of the following year. These randomly assigned labels made it

challenging to establish direct relationships between groups

across periods. Relying solely on centroids could lead to

incorrect labeling if clusters underwent significant changes

between periods.

Assuming that user behaviors remained relatively stable

over time and that clusters reflected meaningful distinctions

among users, labels for P2 were assigned based on group

membership linked to P1. Previous studies on similar temporal

travel pattern data indicated that clusters typically retained

consistent CardKeys over time, with most movements aligning

with clusters exhibiting similar temporal profiles [16].

Each cluster was represented by the set of users that traveled

in any cluster during both time periods. Utilizing Jaccard sim-

ilarity and focusing on users present in both periods allowed

us to establish connections between clusters based on their

membership composition. This enabled analysis of transitions

between groups and changes in ticket category distributions

within clusters.

For each cluster, a set of CardKeys representing its mem-

bership was retained only for those present in both periods.

This increased the ratios for all groups, particularly for groups

comprising more transient users, where the number of Card-

Keys traveling in both periods was lower compared to more

stable ticket categories such as period tickets. A matrix was

constructed to compare the Jaccard similarity of CardKeys

between clusters from different periods, resulting in an n ×

m matrix where the ratio of similarity ranged from zero to

one. A score of zero indicated that the two clusters had no

users in common, while a score of one indicated that the two

clusters had identical users (aside from those traveling only in

P1 or only in P2).

This matrix was used to relabel clusters in P2 to the name

of the cluster in P1 with the highest Jaccard score, starting

with the highest scores. To avoid dominance by a single large

group and to accommodate varying cluster counts between

periods, matched clusters were sequentially removed from

further matching, preventing the capture of merges and splits

as a trade-off.

To summarize, all clusters were represented as sets of

CardKeys, with those not traveling in both P1 and P2 dropped.

All clusters from P1 were compared to all clusters in P2 based

on the intersection over the union of membership. Clusters

in P2 were relabeled to the name of their best match in P1,

starting with the highest ratio of shared CardKeys. Each cluster

could only be matched once, and was then removed from

potential labels.

2) Change Over Time: With users clustered and groups

matched across different time periods, the focus shifts to

analyzing and quantifying underlying changes. User behavior

was characterized by a set of temporal profiles that consider

the time of day and day of the week for their journeys.

Changes within clusters are defined by alterations in these

temporal profiles, such as shifts in peak times, alterations in

average travel times, variations in the size of user groups, and

fluctuations in the predominant types of tickets used.

Each cluster was described using parameters like average

number of journeys conducted per weekday, average number

of journeys per hour of the day, radius, and membership

to outline basic trends in average behavior and highlight

preferences within each group. These metrics provide insights

into how clusters evolve over time and how certain groups may

become more prominent or undergo shifts in characteristics.

To accurately assess changes, comparisons are made with

previous periods to distinguish actual shifts in user behavior

from seasonal variations or responses to specific events, such

as changes in ticket prices. This comparative analysis helps in

understanding whether observed changes are persistent trends

or temporary fluctuations influenced by external factors.

F. Costs and Scalability

The proposed DUGET framework is tailored to handle the

complexities of large-scale public transportation data. The

initial phase employs the k-means++ algorithm, selected for

its ability to efficiently handle large datasets. With a time

complexity of O(n · k · d), where n is the number of data

points, k is the number of clusters, and d is the dimensionality



of the data, k-means++ ensures that the initial clustering

phase is both computationally feasible and scalable. This

step significantly reduces the dimensionality of the dataset,

providing a streamlined input for the subsequent clustering

process.

Following this, Hierarchical Agglomerative Clustering

(HAC) is applied to refine the clusters identified by k-

means++. While HAC is known for its higher computational

demands—characterized by a time complexity of O(N3) and

a space complexity of O(N2) —its application at this stage is

crucial for capturing the nuanced, nested structures within the

data that are often missed by simpler methods. By operating on

a reduced dataset, the resource demands of HAC are mitigated,

allowing DUGET to maintain a balance between accuracy and

efficiency.

The computational cost of these processes is carefully

managed through implementation choices in limiting the di-

mensions used to represent users, and to through the domain

being built on more limited groups, ensuring that the frame-

work can scale with increasing data sizes. This balance is

particularly evident in our empirical analysis, where DUGET

was applied to a dataset comprising roughly 3 million users.

The results demonstrated that while the HAC step required sig-

nificant computational resources, these demands were within

the capacity of standard computational infrastructures when

processing datasets of this size. Further scalability analyses

project that even with datasets ten or one hundred times larger,

DUGET remains viable, provided that sufficient computational

resources are available.

III. RESULTS AND ANALYSIS

The evaluation of the DUGET framework underscores its

ability to identify and track the evolution of user groups

within Stockholm’s public transportation system, despite the

challenges posed by overlapping clusters. While the silhouette

scores were lower than expected due to these overlaps, the

framework consistently identified similar groupings across

multiple consecutive runs and during different seasons. This

consistency, particularly in identifying stable user segments

such as daily commuters, highlights the robustness of the

clustering approach where Figure 8 and Figure 9 shows the

similarity between November 2022 and January 2023.

The Jaccard similarity for the larger, consistent clusters was

observed to be upwards of 0.69, reinforcing the reliability of

the framework in tracking stable user groups over time. These

stable clusters, despite the inherent complexities of the dataset,

provide valuable, actionable insights for transit planners, en-

suring that core services remain optimized for the majority of

users. In contrast, the dynamic clusters exhibited significant

behavioral shifts, particularly in response to external factors

such as seasonality during the summer months and the fare

increase implemented in January 2024. The analysis revealed

a clear migration of users between clusters, with some users

adapting to the fare changes by altering their travel times or

reducing the frequency of their trips. This dynamic adaptability

Fig. 8: Average Journeys per day of the week and per hour of

the day for the commuter segment during November 2022

Fig. 9: Average Journeys per day of the week and per hour of

the day for the commuter segment during January 2023

highlights the framework’s ability to capture and reflect real-

world behavioral changes, offering a comprehensive tool for

understanding both stable and shifting user patterns in transit

systems.

Fig. 10: Average Journeys per day of the week and per hour

of the day for the Saturday segment during November 2022

The use of Jaccard similarity for cluster tracking proved

instrumental in quantifying the degree of change within these

user groups. For example, in the comparison of clusters

between November 2022 and January 2023, and between

November 2023 and January 2024, we observed a divergence

in cluster composition, particularly in groups with high num-

bers of single ticket users. The ability to measure and visualize

how clusters overlap or diverge over time provides a powerful



Fig. 11: Average Journeys per day of the week and per hour

of the day for the Saturday segment during January 2023

tool for understanding the impact of external factors on public

transportation usage—a capability that was previously not

utilized at the Transport Administration Region Stockholm.

This approach not only enhances our comprehension of user

behavior but also offers a model that can be applied to other

public transportation systems worldwide.

The seasonal analysis further enriched our understanding

of user behavior. The data indicated a predictable yet signif-

icant shift in travel patterns during the holiday season, with

certain user groups, such as non-daily commuters, exhibiting

more sporadic travel behavior. These insights are crucial for

transit authorities to anticipate demand fluctuations and adjust

services accordingly. Specifically, the decrease in single ticket

users within certain clusters during January 2024, as opposed

to January 2023, suggests a possible reaction to the fare

increase, which may highlight a sensitivity in these user

segments to fare changes.

The ticket category count for each of the manual groups, as

shown in Table III, illustrates the distinct clustering patterns

identified using DUGET. The clusters between November

2022 and January 2023 were mapped so that cluster 1 had

the most similarity in terms of membership with cluster 1,

and the same mapping was applied between November 2023

and January 2024. Despite some users being dropped due to

changes in group composition, the analysis showed that cluster

1 for 2022/2023 and cluster 4 for 2023/2024 consistently

represented the commuter group, characterized by a high

number of period, school, and single ticket users.

TABLE III: Comparison of Shared Users in Each Ticket

Category Between November and January Across Years

Category November 2022 and January 2023 November 2023 and January 2024

Period 51,000 24,000
Tourist 1,000 1,000
School 53,000 56,000
Single 52,000 19,000

The identification of these commuter groups provided valu-

able insights into how single tickets might be used similarly to

period tickets, a behavior not captured by previously applied

methods. Cluster 2 for 2022/2023 and cluster 6 for 2023/2024

represented day/activity-based travelers, showing a more even

spread over the day compared to commuters. This group might

include commuters with flexible schedules, as indicated by the

significant portion of period and school users. The observed

reduction in tourist and single ticket users within this group in

January 2024, compared to January 2023, could be attributed

to the overall lower number of these users during that period.

Fig. 12: Average Journeys per day of the week and per hour

of the day for the activity-based segment during November

2022

Fig. 13: Average Journeys per day of the week and per hour

of the day for the activity-based segment during January 2023

Additionally, the groups with zero period and school ticket

users further demonstrate how period tickets are predominantly

used by individuals conducting a greater number of journeys.

The grouping of users who prefer traveling on specific days

of the week, such as Fridays or Saturdays, provides transit

planners with insights that were previously masked by broader

categorizations like weekday/weekend travel patterns.

The scalability of the DUGET framework was rigorously

tested through both empirical analysis and theoretical pro-

jections. In our experiments, the initial k-means++ clustering

phase demonstrated efficient performance, requiring approx-

imately 1 minute to cluster 1 million users. The HAC step,

while more computationally demanding, completed within 2

minutes using standard computational resources, underscoring

the practicality of the approach for datasets of this size where

the first step of clustering decreased the costs of using HAC.

The final set of groups identified and matched between

November 2023 and January 2024 demonstrates the robustness

of the DUGET framework, despite fluctuations in cluster



TABLE IV: Average Trips Conducted per Cluster in November

2023 and January 2024

Cluster Average Trips (November 2023) Average Trips (January 2024)

Cluster 1 10.07 10.43
Cluster 2 8.41 8.37
Cluster 3 9.92 8.35
Cluster 4 33.65 29.26
Cluster 5 11.66 9.21
Cluster 6 19.64 22.26

size over time. Clusters such as Cluster 1 and Cluster 2

exhibit minimal variation in behavior, with changes in av-

erage trips conducted per month remaining within 0.48%

and 3.57%, respectively. This stability in behavior, despite

external factors and shifts in group composition, underscores

the framework’s effectiveness in maintaining consistent user

groups. Furthermore, the clear distinction between clusters,

as evidenced by the significant differences in average trips

per group—such as the contrast between Cluster 4 (29.26

trips) and Cluster 2 (8.37 trips) in January 2024—reinforces

the framework’s ability to accurately segment users based on

meaningful behavioral patterns. Overall, these findings further

validate DUGET’s capability to dynamically track, adapt, and

preserve the integrity of user behavior across multiple periods,

providing transit planners with actionable insights for real-

world applications.

IV. DISCUSSION

This study demonstrates the effectiveness of dynamic clus-

tering in analyzing user behavior within public transporta-

tion systems. The methodology successfully captured nuanced

travel patterns across diverse user groups, offering insights

into how these groups evolve in response to external factors

such as fare changes. The combined use of k-means++ and

Hierarchical Agglomerative Clustering (HAC) allowed for the

identification of stable user segments, such as daily com-

muters, while also highlighting dynamic clusters sensitive to

external changes.

A key strength of the DUGET framework lies in its ability

to track user behavior over time using Jaccard similarity,

which confirmed the stability of certain groups and captured

significant shifts in others. This differentiation between stable

and dynamic clusters provides a more granular understanding

of user behavior, helping transit planners target interventions

more effectively.

However, this study has several limitations. The reliance on

temporal data, while crucial for understanding public trans-

portation usage, does not fully capture the complexity of user

behavior. Factors such as socioeconomic status, trip purpose,

and multimodal travel preferences were not incorporated, po-

tentially leading to oversimplified segmentation. Additionally,

the assumption that each CardKey corresponds to a single user

may introduce inaccuracies due to data anonymization.

Another key limitation is the computational complexity, par-

ticularly in the use of Hierarchical Agglomerative Clustering

(HAC) and the querying and joining of large datasets. As

data grows, these processes can become bottlenecks, affecting

scalability and performance. While HAC effectively refines

clusters, its high computational cost, combined with complex

database operations, presents challenges for larger datasets.

To address these issues, sampling and dimensionality reduc-

tion are essential for improving scalability. Sampling enables

processing of representative data subsets, reducing computa-

tional load without sacrificing accuracy, while dimensionality

reduction retains the most relevant features. Integrating these

techniques with more efficient algorithms or hybrid approaches

would improve both scalability and the framework’s robust-

ness.

Despite these limitations, the DUGET framework’s ability

to capture dynamic user groups and temporal shifts offers

significant value. Its capacity to detect granular behavioral

changes that static methods miss demonstrates its utility in

complex urban transportation systems. Future work could

further enhance the framework by incorporating additional

data sources, such as user feedback and socioeconomic indi-

cators, and by exploring multimodal travel patterns for a more

comprehensive understanding of user behavior.

V. CONCLUSION AND FUTURE WORK

The DUGET framework effectively grouped users based on

temporal patterns and tracked their evolution over time. By

leveraging both k-means++ and HAC, the framework provides

urban planners with detailed insights into user behavior, offer-

ing a nuanced understanding of how stable and dynamic user

groups respond to external factors like fare changes and sea-

sonality. This capability highlights the framework’s practical

utility for effectively capturing and analyzing evolving user

behavior in public transportation systems.

One of the most notable findings is DUGET’s ability to de-

tect granular behavioral shifts, in contrast to existing method-

ologies that focus on aggregated metrics, such as the total

number of tickets sold. This highlights the critical importance

of incorporating temporal dynamics into public transportation

analysis for a more nuanced understanding of user behavior.

Additionally, the scalability of DUGET was validated through

its ability to maintain robust performance and manageable

computational requirements as the dataset size increased. The

primary computational bottleneck, k-means++, scales linearly

with the number of users, ensuring that clustering operations

remain efficient even as data grows. This combination of

scalability and detailed behavioral insights positions DUGET

as a highly effective tool for modern public transportation

planning.

The flexibility of DUGET lies in its ability to adjust the

level of detail by varying the number of clusters and the

granularity of time periods examined. This adaptability enables

the tracking of seasonal changes on yearly, monthly, weekly,

and daily levels. While the methodology was primarily tailored

to public transportation, it is adaptable to other domains,

with the critical factor being the domain knowledge required

to represent the objects under examination accurately. The

choice of clustering algorithms and the data size are the



primary constraints when utilizing this cluster tracking method

efficiently.

While the DUGET framework has demonstrated effective-

ness, several limitations may impact its broader implementa-

tion. The reliance on existing clustering algorithms, which are

sensitive to parameters and data types, can lead to suboptimal

results in certain contexts. The assumption of stable user

group memberships may not hold for sporadic users, com-

plicating segment relabeling. Additionally, the storage of user

memberships over time can be challenging in memory-limited

systems, suggesting the need for more efficient solutions. In

environments with significant seasonal variations, longer initial

periods may be required to establish reliable baselines, as time-

binning could obscure short-term behavioral changes. While

using shorter intervals, such as weekly data, could mitigate

this, it would demand additional computational resources and

fine-tuning.

The DUGET framework opens several exciting avenues for

future research and development. Exploration of automated

solutions, more advanced clustering techniques, and analysis

of sporadic users and seasonal effects are a few examples.

Incorporating temporal and spatial data could provide a more

comprehensive framework, applicable to a wider range of data

types. Further experimentation with user representation could

lead to more distinct and explainable segments, improving

qualitative mapping. Additionally, testing various segment

mapping techniques over time, and automating the evaluation

of cluster robustness using metrics like Jaccard similarity,

will enhance the framework’s generalizability, reliability, and

scalability across diverse applications.
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