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Abstract. Training of deep neural networks from scratch requires ini-
tialization of the neural network weights as a first step. Over the years,
many policies and techniques for weight initialization have been proposed
and widely used, including Kaiming initialization and different variants of
random initialization. On the other hand, another requirement for start-
ing the training stage is to choose and set suitable hyperparameter values,
which are usually obtained by performing several hyperparameter tun-
ing trials. In this paper, we study the suitability of weight initialization
using weights obtained from different epochs of hyperparameter tuning
trials and compare it to Kaiming uniform (random) weight initializa-
tion for image classification tasks. Based on an experimental evaluation
using ResNet-18, ResNet-152, and InceptionV3 models, and CIFAR-10,
CIFAR-100, Tiny ImageNet, and Food-101 datasets, we show that weight
initialization from hyperparameter tuning trials can speed up the train-
ing of deep neural networks by up to 2x while maintaining or improving
the best test accuracy of the trained models, when compared to random
initialization.

Keywords: weight initialization · deep neural network training · hyper-
parameter tuning · model training

1 Introduction

Training deep neural networks (DNNs) requires setting values for some param-
eters of the training process, e.g., learning rate, dropout rate, number of hidden
layers, the amount of weight decay, and various settings of the model optimiza-
tion algorithm, before starting the training stage. These parameters are referred
to as hyperparameters (HPs), or meta-parameters for DNN model training, and
their values are typically found during a stage called hyperparameter tuning (or
hyperparameter optimization), where our goal is to find the right combination
for the value of different hyperparameters that maximize the prediction accuracy
of the model.
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The HP tuning stage is usually started by specifying a search space of hy-
perparameters, which includes the list of hyperparameters and the possible or
allowed values each can take. Then, an HP tuning algorithm (or approach) is
selected based on the downstream task and the computational and time con-
straints. The search process involves multiple trials, each training a model with
a combination of hyperparameter values. Over the years, many hyperparameter
tuning algorithms have been proposed [7], with grid search, random search [3],
Bayesian optimization [26], and Asynchronous Successive Halving Algorithm
(ASHA) [14] being the most popular. In the HP tuning stage, the training data
is usually divided into (smaller) training and validation sets. Then, the model
will be trained for a reduced number of epochs (usually a fraction of the number
of epochs used for full model training) on the (smaller) training set using dif-
ferent combinations of hyperparameter values. The resulting performance from
various combinations is then evaluated against the validation sets. At the end of
this stage, the hyperparameters required for model training are chosen, and we
proceed to the training stage.

Prior to the full model training stage, however, we need to perform one
additional step, i.e., weight initialization [18], after deciding the values of hyper-
parameters. This involves setting appropriate initial values for the DNN model
for effective training, e.g., avoiding issues like exploding and vanishing gradi-
ents [1]. Over the years, researchers and practitioners have proposed numerous
approaches for weight initialization [18], including random initialization, Xavier
(Glorot) initialization [8], and Kaiming (He) initialization [10]. Different initial-
ization approaches use different heuristics and techniques to provide a better
starting point for the model training stage, based on, e.g., information about
the model, priors on the distribution of the dataset, etc. Nevertheless, to the
best of our knowledge, there is a lack of weight initialization schemes that would
use computations or results from the hyperparameter tuning stage, where the
model from the best-performing trial has already “learned” some useful informa-
tion from the dataset used for hyperparameter tuning, and can be potentially
reused to provide a more appropriate starting point for the full model training.

Inspired by the idea of reusing computations or results of different stages of
creating a deep learning (DL) system [15], in this paper we try to understand
how weight initialization using the results of the hyperparameter tuning stage
compares to the current best practices for weight initialization, in particular, the
default weight initialization in PyTorch which is a variant of Kaiming uniform
initialization for convolutional layers3. Our driving motivation was to see if we
could somehow “reuse” some of the computations of the hyperparameter tuning
stage in the training stage.

Contributions. In this paper, we:

3 The list of available initializations in PyTorch:
https://pytorch.org/docs/stable/nn.init.html
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– propose a novel weight initialization approach that uses computation results
(i.e., model weights) of the hyperparameter tuning stage to speed up and
enhance the model training stage, and

– through an experimental evaluation consisting of 232 training runs, we show
that for some combinations of models and datasets, weight initialization from
hyperparameter tuning trials can outperform random initialization in terms
of time-to-target-accuracy (which translates into speedup of the training
stage by up to 2x), while achieving similar or even better best test accuracy.

2 Background

Weight Initialization. Neural network weight initialization is a very crucial
and well-studied subject in the machine learning and deep learning literature [23,
1, 25, 18]. Weights are parameters that the neural network learns during the
training process. Each weight represents the strength of connections between
neurons, and the weights in a neural network determine how it will react in
the output given a certain input. The primary goal of the training stage is to
learn the appropriate values of all the weights from the data so that the neural
network would perform well on the training data and generalize well on unseen
test data.

Weight initialization is a crucial step in the training process of neural net-
works. The training process of neural networks is iterative by nature and is
dominated by methods of stochastic gradient descent and its variants, and most
neural networks are strongly affected by the choice of initialization [9]; hence,
we need a suitable initial point for the training process where weights are initial-
ized. The choice of the initial point can affect the speed of convergence, determine
whether the neural network converges to a point with low and high cost, and
sometimes, whether it converges at all. Common weight initialization techniques
implemented and used in different deep learning software frameworks include
variants of Xavier (Glorot) and Kaiming (He) initialization. In this work, we
propose a new method that uses the best weight point found during hyperpa-
rameter tuning trials as the initial point for the model training stage.

Throughout the years, several weight initialization approaches based on “pre-
training” have been proposed [13, 2, 12, 24, 21]. Our approach differs from this
body of work, particularly in that they all include various computations and cal-
culations (e.g., using Autoencoders) on the pre-trained neural network, whereas
we directly use the exact weights from the winning hyperparameter tuning trial.
We refer readers to [18] for a recent review of weight initialization strategies and
approaches.

Hyperparameter Tuning and Optimization. Apart from model weights
(parameters) that determine the model itself, most machine learning models have
settings that we usually refer to as hyperparameters, e.g., the number of hidden
layers in the model, choice of the optimizer, learning rate, etc. Hyperparameters
specify the details of the learning process but are not part of the result of training
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the model. Some hyperparameters, e.g., batch size and number of hidden layers,
affect the time and memory cost of the training process. Other hyperparameters,
e.g., choice of optimizer and floating point precision, affect the quality of the
learned model after the training process.

One can choose between two basic approaches for selecting hyperparameters,
i.e., manually or automatically. Choosing a hyperparameter manually requires
domain knowledge and a deep understanding of the model, the downstream task,
and the training process itself. Apart from that, choosing manually would often
involve a tedious process of trial and error by trying out different potential values.
Automated selection of hyperparameters, often referred to as hyperparameter
tuning (or optimization), lifts the requirement of domain knowledge and requires
less manual effort.

In a typical setting of HP tuning, we need to define a search space, a search
strategy, and a computation budget. The search space specifies the ranges of
values of the hyperparameters that we are interested in optimizing. A search
strategy defines how we navigate through the search space to find the optimal set
of values for the given hyperparameters. Finally, the computation budget limits
the amount of time and computation used for the search. Common search strate-
gies include grid search, random search, Bayesian optimization, Asynchronous
Successive Halving (ASHA), etc. The computation budget can be specified in
wall-clock time, number of epochs, number of evaluations, etc. We refer read-
ers to [7, 27, 4] for a detailed review of hyperparameter tuning and optimization
methods.

Meta-learning and Weight Initialization. A number of approaches have
been proposed to learn “initializers” or “policies” that can suggest suitable initial
parameters. Among these proposals, [6] introduce MetaInit, an algorithm that
learns to suitably initialize the parameters of a given neural network for a given
task. Our work is different from this line of research in that we do not attempt to
“learn” any set of weights for the purpose of initialization; instead, we propose
to “reuse” the model weights that are already learned during hyperparameter
tuning trials as initial weights for the model training stage.

3 Methodology

Based on the idea of reusing results and computations of one stage of DL systems
in another, we propose a novel weight initialization approach that uses weights
from the top-performing or “winning” hyperparameter tuning trials to initialize
the model weights for the model training stage. Generally, the performance of the
HP tuning trial is measured using the same performance metric as the training
task, e.g., validation (test) accuracy for classification tasks. The assumption is
that for one trial in the hyperparameter tuning stage to be the winner, the
weights in the model of that trial have already accomplished learning from the
data to some degree compared to random initialization. Furthermore, it might
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Fig. 1. The modified hyperparameter tuning experiment, where in addition to suitable
hyperparameter values, we also use the weights from the winning hyperparameter tun-
ing trial to initialize the model for the model training stage.

even be potentially a decent set of weights as it is the winner among all the other
trials allowed in the hyperparameter tuning budget.

Reusing the weights of the best hyperparameter tuning trial requires a minor
modification to the typical hyperparameter tuning loop to save the weights of
the model at certain epochs during the trials. Figure 1 and Algorithm 1 show
the needed modification. This essentially means that in addition to suitable
hyperparameter values, we also save (and later reuse) the model weights from
the best hyperparameter tuning trial.

Algorithm 1 Hyperparameter Tuning with Weight Saving
Require: Total number of hyperparameter tuning trials N , number of epochs per trial

E
1: for i = 1 to N do
2: Choose a set of hyperparameter values for the trial
3: for e = 1 to E do
4: Perform a forward and backward pass on the model
5: Update the model weights
6: Save the model weights to storage as weights_i_e
7: end for
8: end for

We can see in Algorithm 1 that our only modification in a typical hyperpa-
rameter tuning trial corresponds to line 6, in which we save the model weights
to storage after each epoch. Based on our specific initialization policy, we do this
to choose a set of initial weights from any given epoch for the training stage.
As an example, in Figure 2, we have shown the best test accuracy of models
initialized with different configurations. The numbers on the X axis, i.e., 2, 5,
10, 15, 20, and 25, correspond to different values for e when initializing the
model with weights_i_e before starting the training stage, where the value of i



6 S. Sheikholeslami et al.

corresponds to the index of the “winning” hyperparameter tuning trial (i.e., the
trial with the best final validation accuracy). We should mention that for very
large models, saving all the weights of different model variants might require
considerable storage space and time to write to external storage. However, one
can mitigate this by keeping track of the performance metric of top-T models
(with T being a predefined constant number and only triggering the model save
function when better models, e.g., with regards to test accuracy, are found).

4 Experimental Evaluation

To evaluate our weight initialization approach, we perform a number of experi-
ments on different models and datasets and compare weight initialization from
hyperparameter tuning to PyTorch’s default initialization scheme, which uses a
combination of various techniques, including Kaiming uniform [10] for convolu-
tional and linear layers. We repeat the experiments several times as a way to
control for randomness.

Our two main evaluation metrics are (i) best test accuracy, which is the
maximum (top-1) accuracy of the model on the test set during training, and (ii)
time-to-target-accuracy (TTA), which is measured as the number of epochs it
takes for the model to surpass a relatively high test accuracy as a milestone.
The former metric indicates the model performance for a configuration, while
the latter suggests the effect of a configuration on training time. To summa-
rize, we want to know if our initialization approach can result in better models
(higher test accuracy) while speeding up training (lower TTA). We choose the
target accuracies based on our observations from the training curves of each
model/dataset pair.

4.1 Experiment Setup

Hyperparameter Search Space. For the ResNet models, we use SGD with
momentum (0.9) and follow a search space inspired by Zhang et al. [28] and
common practice: a set of possible learning rate values of {0.01, 0.03, 0.05, 0.1,
0.2, 0.3} and a set of possible weight decay values of {0.0003, 0.001, 0.003}. De-
tails about the hyperparameter tuning for the InceptionV3 model can be found
in 4.6. We try a subset of the different combinations using random search. We use
PyTorch [19] on Ray [16, 17] for hyperparameter tuning and parallel execution
of trials while assigning a different random seed to each trial. For hyperparam-
eter tuning of experiments that use the CIFAR-10, CIFAR-100, and Food-101
datasets, the training datasets provided by PyTorch were randomly partitioned
into 80/20 train/validation splits. The corresponding subsections below explain
more details on hyperparameter tuning for each task.

Weight Initialization Experiments. The goal of this set of experiments is to
investigate if we can use the model weights obtained during the hyperparame-
ter tuning to initialize the model before starting the training round. We select a
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number of common model/dataset combinations (e.g., ResNet-18 on CIFAR-10).
For each combination, we tune a number of model-independent hyperparameters
(i.e., learning rate and weight decay) for a number of trials using random search,
with no early stopping. Within each hyperparameter tuning trial, we save the
model weights after every epochf. We then rank the trials in descending order of
final validation accuracy and specify the winning hyperparameter tuning trial.
Moving on to the model training stage, for weight initialization we use weights
from several epochs of the winning trial. We then train the model for a number of
epochs, and report the best test accuracy of each training trial. As the baseline
for comparison, we use random initialization as implemented in PyTorch, which
in particular uses Kaiming uniform initialization for convolutional layers.

Randomness Control and Reproducibility. When training deep neural
networks, we should deal with many sources of randomness, including non-
determinisms in hardware, software frameworks, and optimization algorithms
and computations [29, 20]. This stochasticity can drastically influence the per-
formance of models and make it hard for researchers to draw strong conclusions
from experimental evaluations. To alleviate this and allow for reasonable repro-
ducibility of our results, We use a predefined set of global random seeds, repeat
each set of experiments several times, and report the averages and standard de-
viations for each set of results4.

4.2 EXP1: ResNet-18 on CIFAR-10

Our first set of experiments deals with tuning and training ResNet-18 on the
CIFAR-10 dataset5. The CIFAR-10 dataset contains 60000 32× 32 color images
in 10 classes (6000 images per class). There are 50000 training images and 10000
test images.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 10 tuning trials, with each trial
consisting of 30 epochs of training with a batch size of 256. The winning trial
had achieved a final validation accuracy of 88.48% with a learning rate of 0.01
and weight decay rate of 0.0003.

Training Configurations. Using the hyperparameters and weights from the
winning hyperparameter tuning trial, we try 7 different weight initializations
and compare them to a baseline in which we initialize the model weights us-
ing PyTorch’s default scheme. These 7 different sets of weights are taken from
epochs #2, #5, #10, #15, #20, #25, and the final epoch (HP Final, #30).
Each configuration is trained for 200 epochs, and we repeat the training 8 times

4 Code and raw results from our experiments can be found in
https://github.com/ssheikholeslami/dnn-weight-initialization-from-hp-tuning.

5 CIFAR-10 and CIFAR-100 datasets: https://www.cs.toronto.edu/ kriz/cifar.html
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Fig. 2. Best test accuracy after 200 epochs of training ResNet-18 on CIFAR-10, using
different weight initialization configurations. Numerical values are reported in Table 1.

(with 8 different global seeds). Based on the training curves of the models we set
the target to 90.00%. The results of this experiment are also presented in Table 1.

We can see that all the models that use weight initialization from the hyperpa-
rameter tuning stage achieve this milestone significantly faster than the baseline
approach (random initialization), and most of them achieve a higher best test
accuracy on average compared to the baseline. To verify the significance of the
results, we performed a paired t-test and Mann–Whitney U-test on results from
“Epoch 25” and “Random” configurations, and the results were: t-statistic=3.521,
p-value=0.00970; U1=3.0, p-value=0.00108, both indicating a significant differ-
ence in terms of best test accuracy. This specific configuration also shows an
speedup of 2.027x in terms of TTA compared to random initialization.

4.3 EXP2: ResNet-18 on CIFAR-100

In this experiment, we tune and train ResNet-18 this time on the CIFAR-100
dataset. CIFAR-100 is similar to CIFAR-10 in terms of dimensions and total
number of examples, but it has 100 classes containing 600 images each.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 10 tuning trials, with each trial
consisting of 40 epochs of training with a batch size of 256. The winning trial
had achieved a final validation accuracy of 57.74% with a learning rate of 0.1
and weight decay rate of 0.0003.

Training Configurations. Using the hyperparameters and weights from the
winning hyperparameter tuning trial, we try 6 different weight initializations
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Fig. 3. First epoch to reach the target (90%) test accuracy when training ResNet-18
on CIFAR-10, using different weight initialization configurations.

and compare them to a baseline in which we initialize the model weights us-
ing PyTorch’s default scheme. These 6 different sets of weights are taken from
epochs #5, #10, #15, #30, #35, and the final epoch (HP Final, #40). Each
configuration is trained for 200 epochs, and we repeat the training 8 times (with
8 different global seeds). Based on the training curves of the models we set the
target to 75.00%. The results of this experiment are presented in Figure 4 and
Table 2.

4.4 EXP3: ResNet-18 on Tiny ImageNet

In this experiment, we tune and train ResNet-18 on the Tiny ImageNet6 dataset.
Tiny ImageNet is a small-scale version of the larger ImageNet dataset, and con-
tains 100000 downsized 64 × 64 color images in 200 classes as the training set,
as well as 50 images for validation and 50 images for test in each class.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 12 tuning trials, with each trial
consisting of 40 epochs of training with a batch size of 256. The winning trial
had achieved a final validation accuracy of 35.94% with a learning rate of 0.3
and a weight decay rate of 0.0003.

Training Configurations. Using the hyperparameters and weights from the
winning hyperparameter tuning trial, we try 6 different weight initializations
and compare them to a baseline in which we initialize the model weights us-
ing PyTorch’s default scheme. These 6 different sets of weights are taken from
6 Accessible from https://image-net.org/download-images.php
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Table 1. Results from the experiments on ResNet-18 and CIFAR-10. Each trial consists
of training the model for 200 epochs. The experiments for each configuration (row) are
repeated with 8 different random seeds, and the average values are reported. The TTA
in this table indicates the first epoch in which the model achieves at least a 90.00%
test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 2 94.198±0.108 24.0
Epoch 5 94.289±0.107 21.25
Epoch 10 94.319±0.085 20.75
Epoch 15 94.339±0.166 18.5
Epoch 20 94.351±0.103 14.625
Epoch 25 94.391±0.061 14.375

HP Final Epoch 94.316±0.061 12.75
Random (Kaiming + Uniform) 94.231±0.098 29.125

Table 2. Results from the experiments on ResNet-18 and CIFAR-100. Each trial con-
sists of training the model for 200 epochs. The experiments for each configuration (row)
have been repeated with 8 different random seeds and the average values are reported.
The TTA in this table indicates the first epoch in which the model achieves at least a
75.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 5 77.044±0.191 122.75
Epoch 10 77.152±0.219 123.25
Epoch 15 77.112±0.138 123.125
Epoch 30 77.292±0.181 124.5
Epoch 35 77.124±0.287 124.25

HP Final Epoch 76.947±0.193 124.25
Random (Kaiming + Uniform) 77.080±0.299 122.375

epochs #5, #10, #15, #30, #35, and the final epoch (HP Final, #40). Each
configuration is trained for 200 epochs, and we repeat the training 8 times (with
8 different global seeds). Based on the final accuracies and training curves, we
set the target to 40.00%. The results of this experiment are presented in Figure 5
and Table 3.

4.5 EXP4: ResNet-152 on CIFAR-100

For this experiment, we change the model from ResNet-18 to ResNet-152, which
is the larger variant of the ResNet family of models [11], and train it on the
CIFAR-100 dataset. Tiny ImageNet is a small-scale version of the larger Ima-
geNet dataset, and contains 100000 downsized 64×64 color images in 200 classes
as the training set, as well as 50 images for validation and 50 images for test in
each class.

Hyperparameter Tuning. For hyperparameter tuning, we used the same
search space described in 4.1. We performed 10 tuning trials, with each trial
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Fig. 4. Best test accuracy after 200 epochs of training ResNet-18 on CIFAR-100, using
different weight initialization configurations. Numerical values are reported in Table 2.

Table 3. Results from the experiments on ResNet-18 and Tiny ImageNet. Each trial
consists of training the model for 200 epochs. The experiments for each configuration
(row) are repeated with 8 different random seeds and the average values are reported.
The TTA in this table indicates the first epoch in which the model achieves at least a
40.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 5 44.062±0.536 153.75
Epoch 10 44.085±0.403 153.25
Epoch 15 43.885±0.245 153.5
Epoch 30 44.328±0.479 153.875
Epoch 35 44.362±0.415 154.125

HP Final Epoch 44.223±0.275 154.25
Random (Kaiming + Uniform) 44.428±0.485 154.5

consisting of 80 epochs of training with a batch size of 128. The winning trial
had achieved a final validation accuracy of 51.13% with a learning rate of 0.01
and a weight decay rate of 0.003.

Training Configurations. Using the hyperparameters and weights from the
winning hyperparameter tuning trial, we try three different weight initializations
and compare them to a baseline in which we initialize the model weights using
PyTorch’s default scheme. These three sets of weights are taken from epochs
#65, #75 and the final epoch (HP Final, #80). Each configuration is trained
for 200 epochs, and we repeat the training four times (with four different global
seeds). Based on the final accuracies and training curves, we set the target to
75.00%. The results of this experiment are presented in Figure 6 and Table 4.
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Fig. 5. Best test accuracy after 200 epochs of training ResNet-18 on Tiny ImageNet,
using different weight initialization configurations. Numerical values are reported in
Table 3.

Table 4. Results from the experiments on ResNet-152 and CIFAR-100. Each trial
consists of training the model for 200 epochs. The experiments for each configuration
(row) are repeated with 4 different random seeds and the average values are reported.
The TTA in this table indicates the first epoch in which the model achieves at least a
75.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 65 80.23±0.189 144.0
Epoch 75 80.168±0.107 143.25

HP Final Epoch 80.072±0.285 142.5
Random (Kaiming + Uniform) 80.372±0.169 143.25

4.6 EXP5: InceptionV3 on Food-101

For this experiment, we use the InceptionV3 network [22], and train it on the
Food-101 dataset [5]. The Food-101 dataset contains 101000 color images in 101
classes and 750 training and 250 test images per each class.

Hyperparameter Tuning. For hyperparameter tuning, we used the following
search space: learning rate values sampled from a loguniform distribution be-
tween 0.0001 and 0.1, momentum from a uniform distribution between 0.8 and
0.99, weight decay from a loguniform distribution between 0.00001 and 0.001,
and the maximum number of iterations (T_max) for the Cosine Annealing learn-
ing rate scheduler from the set of possible values of 50, 100, 200. We performed
12 tuning trials, with each trial consisting of 20 epochs of training with a batch
size of 64. The winning trial had achieved a final validation accuracy of 40.50%
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Fig. 6. Best test accuracy after 200 epochs of training ResNet-152 on CIFAR-100, using
different weight initialization configurations. Numerical values are reported in Table 4.

with a learning rate of 0.021.

Training Configurations. Using the hyperparameters and weights from the
winning hyperparameter tuning trial, we try four different weight initializations
and compare them to a baseline in which we initialize the model weights using
PyTorch’s default scheme. These four sets of weights are taken from epochs #5,
#10, #15, and the final epoch (HP Final, #20). Each configuration is trained for
50 epochs, and we repeat the training for each configuration eight times (with
eight different global seeds). Based on the final accuracies and training curves,
we set the target to 70.00%. The results of this experiment are presented in
Figure 7, Figure 8, and Table 5. Based on the results, we can see that for this
combination of model and dataset, weight initialization from hyperparameter
tuning trials clearly outperforms random initialization in terms of both TTA
and best test accuracy.

4.7 Further Discussion

Summary of Findings. Overall, our experimental evaluation shows that for
some models and datasets, e.g., ResNet-18 on CIFAR-10 or CIFAR-100, and
InceptionV3 on Food-101, weight initialization using hyperparameter tuning tri-
als can outperform random initialization in terms of time-to-target-accuracy, as
well as best test accuracy. It is also interesting to note that using weights from
a later epoch of the hyperparameter tuning trial does not necessarily result in
a better test accuracy; e.g., we can see in Figure 2 that initializing the model
with weights from epoch #25 result in the best performance, and better than
HP Final.
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Fig. 7. Best test accuracy after 50 epochs of training InceptionV3 on Food-101, using
different weight initialization configurations. Numerical values are reported in Table 5.
Training with each configuration was repeated 8 times.

Table 5. Results from the experiments on InceptionV3 and Food-101. Each trial con-
sists of training the model for 50 epochs. The experiments for each configuration (row)
are repeated with 8 different random seeds and the average values are reported. The
TTA in this table indicates the first epoch in which the model achieves at least a
70.00% test accuracy.

Weight Initialization Best Test Accuracy TTA (#Epoch)
Epoch 5 74.93±0.115 28.75
Epoch 10 75.935±0.23 23.25
Epoch 15 76.572±0.155 20.5

HP Final Epoch 76.894±0.158 18.375
Random (Kaiming + Uniform) 73.385±1.073 33.875

For ResNet-18 on Tiny ImageNet, and ResNet-152 on CIFAR-100, random
initialization achieves a higher best test accuracy, but other initializations can
achieve better TTAs. One possible reason for this difference in performance
is that for ResNet-18 on Tiny ImageNet, and ResNet-152 on CIFAR-100, our
underlying training regimes (irrespective of weight initialization policy) do not
result in a test accuracy in the so-called state-of-the-art region, which is not the
case for ResNet-18 on CIFAR-10 and CIFAR-100. This can be investigated using
further, more thorough experiments; however, we believe our findings from these
experiments are interesting enough to motivate further research on this topic.

Storage Requirements. Our modified hyperparameter tuning algorithm, in
its general form, as specified in Algorithm 1, requires that we save the model
weights to storage after each epoch, hence using storage space. When tuning
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Fig. 8. First epoch to reach the target (70%) test accuracy when training InceptionV3
on Food-101, using different weight initialization configurations.

ResNet-152 on CIFAR-100, the size of each set of weights is 224 Megabytes
(MB), so a complete hyperparameter tuning experiment in which we run 10
trials with 80 epochs each would require 179.2 Gigabytes (GB) of storage to
save all the weights. Saving the weights after each epoch can become impractical
or lead to a bottleneck when tuning considerably larger models; however, one
can always modify the algorithm so that only weights from specific epochs are
saved, e.g., the weights from the final epoch.

5 Conclusion

In this paper, we proposed a novel weight initialization approach that uses com-
putation results (i.e., model weights) of the hyperparameter tuning stage to
speed up and enhance the model training stage and evaluated its performance
through a number of experiments on common models and datasets in the im-
age classification domain. Our main research question was to understand how to
effectively perform weight initialization using the weights from the hyperparam-
eter tuning stage and how it compares to the current best practices for weight
initialization, in particular, the default weight initialization in PyTorch. The
results of our experiments using ResNet-18 and ResNet-152 models and CIFAR-
10, CIFAR-100, and Tiny ImageNet datasets show that for some combinations
of models and datasets, weight initialization from hyperparameter tuning trials
can outperform random initialization in terms of time-to-target-accuracy, while
maintaining or improving the best test accuracy of the learned model.

Our work serves as a starting point in the research direction of reusing compu-
tation results in hyperparameter tuning of DNN models to speed up the training
process after hyperparameter tuning. Based on our empirical study, we envision
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that further investigation of our approach can result in weight initialization ap-
proaches that, in turn, lead to possibly faster and more efficient training pipelines
that also train better models. Future work includes expanding our studies in both
theoretical and empirical dimensions to further understand how to effectively
reuse computation results from hyperparameter tuning. To this end, performing
more experiments using more types of DNN models, datasets, and downstream
tasks in different domains can be an interesting starting point.
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