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Abstract. Deep neural networks used for computer vision tasks are
typically trained on datasets consisting of thousands of images, called
examples. Recent studies have shown that examples in a dataset are not
of equal importance for model training and can be categorized based
on quantifiable measures reflecting a notion of “hardness” or “impor-
tance”. In this work, we conduct an empirical study of the impact of
importance-aware partitioning of the dataset examples across workers on
the performance of data-parallel training of deep neural networks. Our
experiments with CIFAR-10 and CIFAR-100 image datasets show that
data-parallel training with importance-aware partitioning can perform
better than vanilla data-parallel training, which is oblivious to the impor-
tance of examples. More specifically, the proper choice of the importance
measure, partitioning heuristic, and the number of intervals for dataset
repartitioning can improve the best accuracy of the model trained for
a fixed number of epochs. We conclude that the parameters related to
importance-aware data-parallel training, including the importance mea-
sure, number of warmup training epochs, and others defined in the paper,
may be considered as hyperparameters of data-parallel model training.
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1 Introduction

Data-parallel training (DPT) is the current best practice for training deep neural
networks (DNNs) on large datasets over several computing nodes (a.k.a. work-
ers) [11]. In DPT, the DNN (model) is replicated among the workers, and the
training dataset is partitioned and distributed uniformly among them. DPT is
an iterative process where in each iteration, each worker trains its model replica
on its dataset partition for one epoch. After each iteration, the parameters or
gradients of the worker models are aggregated and updated. Then, all work-
ers continue the training using the same updated model replicas. This “vanilla”
DPT scheme is shown in Fig. 1.

The dataset partitions in vanilla DPT are constructed by random partition-
ing, i.e., randomly assigning training examples to each partition. However, it is
known that not all examples within a training dataset are of equal importance for
training DNNs [2,3,6,13] meaning that different examples contribute differently
to the training process and the performance of the trained model (e.g., its pre-
diction accuracy). Prior works have used example importance to improve DNN
training schemes, mainly aiming at reducing the total training time or increasing
the performance of the trained models. For example, in dataset subset search [3],
the goal is to find subset(s) of a given training dataset that can be used to train
equally good or more performant models compared to the models trained on
the initial dataset. Example importance has also been used for developing more
effective sampling algorithms for stochastic gradient descent (SGD) [6], or in
active learning for choosing the best examples to label [2].

Contributions. All the above-mentioned solutions are mainly designed for non-
distributed model training. In this paper, we study different heuristics to assign
examples, based on their importance, to workers in a distributed environment
and in DPT. In particular, the contributions of this work are as follows.

— We introduce importance-aware DPT, which replaces the random partitioning
of the dataset across workers in vanilla DPT, with heuristics that partition
the dataset based on some pre-determined notion of example importance,
e.g., the average loss value of each example over a number of training epochs.

— We study the effects of the hyperparameters of importance-aware DPT,
including different (i) example importance measures and metrics, (ii) parti-
tioning heuristics, and (iii) partitioning intervals, on the quality of the train-
ing scheme. Our experiments for image classification tasks on CIFAR-10 and
CIFAR-100 datasets demonstrate that importance-aware DPT can outper-
form vanilla DPT in terms of the best test accuracy achieved by models.

The remainder of this paper is structured as follows. In Sect. 2, we provide
the necessary background, including an overview of DPT and a review of some
related work. In Sect. 3, we present importance-aware DPT and discuss how it
differs from vanilla DPT, which is importance-oblivious. In Sect.4, we discuss
our prototype implementation of importance-aware DPT in PyTorch. In Sect. 5,
we present the results of our experimental evaluation of importance-aware DPT.
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Fig. 1. The vanilla DPT scheme with four workers and one parameter server. At each
epoch, each worker gets a random partition of the dataset, and all the workers are
assigned the same model replica. After one epoch of training, the workers send their
local gradients or model parameters to the parameter server. The parameter server

performs either gradient aggregation or model aggregation and sends back the new
gradients or parameters to the workers.

Finally, in Sect. 6, we give our conclusions and discuss the current limitations of
our importance-aware DPT prototype and further research directions.

2 Background and Related Work

Our work presented in this paper lies in the intersection of data-parallel DNN
training and prior work that studies the difference of examples within a dataset
in terms of their importance for model training. In this section, we give a brief
overview of the DPT of DNNs and some related work on example importance.

2.1 DNN Data-Parallel Training (DPT)

Given a training dataset D consisting of training examples e € D, the aim of
training the model M is to optimize model parameters with regards to a cost
function, e.g., Mean Squared Error or Binary Cross-Entropy, using an iterative
optimization algorithm, e.g., Stochastic Gradient Descent. A training dataset
is typically made up of examples of a specific type, such as images, structured
data, or sentences. During each epoch of training, batches of examples are passed
through the model, and model parameters are optimized using the iterative
optimization algorithm. To scale out the training process, one can use multiple
processing nodes, a.k.a. workers, and partition the DNN (for model-parallelism)
or the dataset (for DPT) and assign them to the workers to enable parallel
training. For our purposes, we define a worker w € W as a process within a
processing node that is allocated exactly one GPU, i.e., each worker corresponds
to exactly one GPU in our cluster of processing nodes.
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In a typical most common DPT scheme, which we refer to as vanilla DPT,
the DNN is replicated across the workers. At the beginning of each epoch, the
dataset is partitioned uniformly at random into disjoint subsets p € P, such
that worker w; is allocated the partition p; (dataset partitioning step). More
formally, P = U?;Ol pi such that p; N p; = 0 for i # j; and p; # 0 for each 1.
For simplicity, we assume that the number of examples in the dataset, or |D|, is
divisible by the number of workers, n = |W|; but the approach and results can
easily be extended to cases where the assumption does not hold.

During an epoch, each worker independently trains its own replica of the
DNN model (local training step) on its own partition p;. At the end of an epoch,
a model synchronization step occurs, e.g., using a parameter server, and the
workers get a new identical replica of the model. This process is repeated for
a specified budget (e.g., a pre-determined number of epochs) or until a model
convergence criterion or performance metric is satisfied. We are interested to see
if using a partitioning function, based on notions of example importance, may
lead to better results compared to vanilla DPT’s random partitioning in terms
of the target performance metrics. We define the importance of an example,
denoted by I'mp, as a mapping of an example to a scalar value:

Imp:e—R (1)

In practice, to implement I'mp, a certain property of the example or the result
of its interactions with the model (e.g., the loss generated by the example after a
forward pass) is used in combination with an aggregation method (e.g., average,
or variance of the losses over a number of epochs).

A partitioning function PartitioningFunction maps the examples to work-
ers to create the set of partitions P, where each worker w; gets the par-
tition p;. We are interested in using the output of Imp to construct the
PartitioningFunction. Example definitions for a PartitioningFunction are
explained in Sect. 3.3.

2.2 Prior Work on Example Importance

The diversity of examples in training datasets has attracted increasing attention
in recent years and has been exploited to improve the state-of-the-art in domains
such as dataset subset search [3,12,13] and sampling for SGD [2,6,13,14].

Chitta et al. [3] propose an ensemble active learning approach for dataset
subset selection using ensemble uncertainty estimation. They also show that
training classifiers on the subsets obtained in this way leads to more accurate
models compared to training on the full dataset. Isola et al. [5] investigate the
memorability of different examples based on the probability of each image being
recognized (perceived as a repetition by the viewer) after a single view and train
a predictor for image memorability based on image features. Memorability is
also a familiar phenomenon to humans, as we can all think of images or visual
memories that have stuck more in our minds compared to other images. Arpit
et al. [1] define example difficulty as the average misclassification rate over a
number of experiments.
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Chang et al. [2] propose to prefer uncertain examples for SGD sampling,
e.g., the examples that are neither consistently predicted correctly with high
confidence nor incorrectly. They use two measures for “example uncertainty”: (i)
the variance of prediction probabilities and (ii) the estimated closeness between
the prediction probabilities and the decision threshold. Yin et al. [14] observe
that high similarity between concurrently processed gradients may lead to the
speedup saturation and degradation of generalization performance for larger
batch sizes and suggest that diversity-inducing training mechanisms can reduce
training time and enable using larger batch sizes without the said side effects in
distributed training.

Vodrahalli et al. [13] propose an importance measure for SGD sampling based
on the gradient magnitude of the loss of each example at the end of training and
use this measure to select a subset of the dataset for retraining. This measure can
also be used to study the diversity of examples in datasets. Katharopoulos and
Fleuret [6] propose an SGD sampling method that favors the more informative
examples, which they describe as the examples that lead to the biggest changes
in model parameters. Toneva et al. [12] propose forgettability as an importance
measure for dataset examples. A forgettable example is an example that gets
classified incorrectly at least once, after its first correct classification, over the
course of training. They also suggest that the forgetting dynamics can be used
to remove many examples from the base training dataset without hurting the
generalization performance of the trained model.

Finally, in the domain of natural language processing, Swayamdipta et al. [10]
have investigated the difference in example importance. They introduce data
maps and calculate two measures for each example: the confidence of the model
in the true class and the variability of the confidence across different epochs in
a single training run. They then categorize the examples into three categories:
easy-to-learn, ambiguous, and hard-to-learn.

3 Importance-Aware DPT

Importance-aware DPT consists of three stages of model training, as shown in
Fig. 2. In the first stage, which we refer to as warmup training, we train the DNN
using vanilla DPT for a number of “warmup” epochs (Euarmaup)- Blocks (1) and
(2) in Fig. 2 show the first stage. In the second stage, we calculate the importance
of each example according to a predefined importance measure, e.g., the average
loss value of each example over E,qrmup training epochs. In the third stage
(blocks (3)—(5) in Fig.2), we continue training using importance-aware DPT in
several intervals. Each interval consists of three steps: (i) dataset partitioning,
i.e., assigning examples to partitions based on a heuristic and allocating one
partition to each worker, (ii) model training, i.e., training the DNN using those
fixed partitions for Fypiervar epochs, and (iii) example importance calculation,
in which we recalculate and update the importance value of each example for
the next interval. In the rest of this section, we discuss importance-aware DPT
in more detail.
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Every epoch, for Ewarmup €pochs Every Einterval €pochs, until completion criteria is met
Y Y
pteRR Training Calculation Partitioning Training
@ @) 3) @ (5)
|—Warmup Training with Vanilla DPT—| |—Imervals of Model Training: I

Fig.2. An overview of Importance-aware data-parallel training. The model is first
trained with Vanilla DPT for Eyarmup epochs, after which the random dataset par-
titioning is replaced with heuristic-based dataset partitioning, and the dataset is par-
titioned at the beginning of each interval of training rather than at the beginning of
each epoch.

3.1 Warmup Training

In the first stage, warmup training, the model is trained with vanilla DPT for
Evarmup epochs, in which the dataset is randomly partitioned among the workers
at the beginning of each epoch. We collect the value(s) needed for calculating
the importance of examples during this stage. In this work, we use the loss value
(the result of backpropagation forward pass) of each example in each epoch to
calculate its importance value, which is the average loss over a number of epochs.
It is worth noting that we will discard the loss values from the first Ejgpore epochs
in warmup training (e.g., the first three epochs), as the losses generated in the
first few epochs are influenced by the random initialization of the neural network
to a high degree.

3.2 Importance Calculation

The second stage is a pause in model training, in which we calculate the impor-
tance of examples using values collected during warmup training. To demon-
strate how this works, consider we calculate the importance of each example
using “average loss across epochs”. To do this, during warmup training, we
collect the loss values (the result of the forward pass) of each example across
Ewarmup €pochs. At the end of warmup training, we will have a matrix such
as in Fig. 3. In this matrix, each row corresponds to a single example, and each
column corresponds to an epoch. Hence, an element a;; in the matrix is the
loss value of example 7 in epoch j. Calculating the importance of each example
would then require a simple aggregation or computation over each row, e.g., a
row-wise average. At the end of this stage, we have one or more scalar values
attributed to each example, indicating its importance, which we use for sorting
or categorizing the examples in the next stage (dataset partitioning).
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2.4630 1.6089 ... 0.8972

0.9879 3.1874 ... 1.7276

Fig. 3. example-epoch-loss matrix that is used to calculate the importance score of
each example.
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Fig. 4. Depiction of Stripes (left) and Blocks (right) partitioning heuristics for a
setting with eight examples (indexed in order of importance) and four workers.

3.3 Dataset Partitioning Heuristics

Now that we have a mapping between examples and their importance values, we
can use various heuristics to proceed with dataset partitioning for importance-
aware DPT. Remind that in vanilla DPT, the examples are partitioned randomly
across the parallel workers at the beginning of each epoch. We have defined two
such heuristics, namely Stripes and Blocks, and compared them with random
partitioning (i.e., vanilla DPT).

Stripes Heuristic. The Stripes partitioning heuristic is a cyclic assignment of
examples to workers. The intuition behind using this heuristic is to preserve the
same distribution of examples with regard to their importance values, in each
partition. To this end, we sort the examples of the dataset D by their importance
value and create a list called Sorted Examples (SE). Then, the partition P; that
is allocated to worker w; is determined as:

P, ={e € D| sorted_index(e) =i( mod n)} (2)

where sorted_index(e) returns the index of example e in the sorted list SE, n is
the number of workers, and ¢ = 0,...,n — 1. The Stripes heuristic is depicted
on the left side of Fig. 4.
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Blocks Heuristic. This partitioning heuristic assigns a continuous block of
examples to each worker so that we will end up with different importance distri-
butions across the workers. Assuming n workers, the Blocks heuristic allocates
the first ‘%l examples ranked in the SFE list to the first worker, the second ‘%‘
of SE to the second worker, and so on. Thus, the partition P; that is allocated
to worker w; using the Blocks heuristic is determined as follows:

D]

D
P,={ee D |ix — < sorted_index(e) < (i +1) x D]
n

— 3
= I C)
where sorted_index(e) returns the index of example e in the sorted list SE and
i=0,...,n — 1. The Blocks heuristic is depicted on the right side of Fig. 4.

3.4 Intervals of Model Training

After warmup training, calculating example importance, and partitioning the
dataset based on the importance values, we continue model training using fixed
partitions in intervals, each comprising of E;,ierva; €pochs. At the beginning of
each training interval, we repartition the dataset using the importance values
calculated during the previous interval. This means that dataset repartitioning
only occurs at the beginning of each interval rather than at the beginning of
every epoch (as in vanilla DPT).

4 Implementation in PyTorch

This section presents the implementation details of importance-aware data-
parallel training in PyTorch v1.10.1 [8,9]. The implementation is mainly based on
several classes and methods that (i) track and calculate the importance of exam-
ples as explained in Sects. 3.1 and 3.2, (ii) partition the dataset across workers
based on importance-aware heuristics defined in Sect. 3.3, and (iii) resume and
continue the model training for fixed intervals of F;,terva; €pochs as described
in Sect. 3.4.

4.1 Importance Calculation

Our proof-of-concept implementation of importance-aware DPT provides impor-
tance calculation for each example based on its average forward pass loss across
a number of epochs. Loss function implementations in PyTorch, by default, do a
batch-wise reduction on the losses and return a scalar aggregate value (e.g., the
average loss of examples in the mini-batch when using CrossEntropyLoss?'). To
get individual (per example) loss values, we construct an additional loss function
of the same type and set its reduction parameter to None. This way, this loss
function returns a tensor instead of a scalar.

! As described in https://pytorch.org/docs/stable/generated /torch.nn.CrossEntropy
Loss.html.
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Hence, each step of the training consists of two forward passes: the first
one uses the customized loss function and writes values to a local worker copy
of a loss-epochs matrix similar to the one depicted in Fig.3, and the second
forward pass uses the default loss function implementation which is used with
the backward pass. Each worker maintains its own copy of the loss-epochs matrix,
and before each dataset partitioning step, the workers wait at a barrier (by calling
torch.distributed.barrier()) for the main process to merge the local copies
and aggregate, i.e., to compute the row-wise average which is the average loss
of each example across the epochs. The output of this step is a sorted list of
tuples (example, importance value) - the Sorted Examples list introduced in
Sect. 3.3, that is used with the importance-aware partitioning heuristics.

4.2 Dataset Partitioning Heuristics

In PyTorch, the DistributedDataSampler class implements the logic for
assigning examples to workers. By default, this class contains an implemen-
tation of random sampling, so we extend this class and add a sampler, called
ConstantSampler, to arbitrarily assign the examples to workers. In this way,
we decouple the implementation for assigning examples to workers, from the
implementation of importance-aware partitioning heuristics. Hence, the same
ConstantSampler can be used with different partitioning heuristics.

A dataset partitioning heuristics provides a mapping between examples and
workers. We implement this mapping in PyTorch by creating a dictionary (dict)
with worker indices as keys and a list of example indices as the value of each key.
Depending on the heuristic, filling in this dictionary would then require iterating
over the list of examples or workers. The result of this step, which is a dict that
maps examples to workers, is used to construct a ConstantSampler instance that
assigns the dataset examples across the workers. Once the ConstantSampler
instance is constructed, the main process also reaches the barrier, so all the
worker processes exit the barrier they had entered before merging their local
matrices (as described in the previous section).

4.3 Modified Training Loop for Importance-Aware Training

Model training in PyTorch typically consists of a few blocks of code for
setting up the training (e.g., downloading the dataset, constructing the
train/test/validation folds and data samplers, and creating the model), followed
by a single loop for iterative training of the model. To implement different stages
of importance-aware DPT, we first break down the default training loop into two
separate loops: one for warmup training (Sect.3.1) and the other for intervals
of importance-aware training (Sect.3.4). The first loop is similar to a typical
PyTorch training loop but is extended with code to track and calculate the
importance of examples. The second loop is nested: an outer loop maintains the
intervals, while the inner loop contains the code for the actual dataset parti-
tioning step, the example importance calculation step, and the model training
step.



Importance-Aware Dataset Partitioning for Data-Parallel DNN Training 83

5 Evaluation

In this section, we describe our experimental setup and scenarios and discuss the
results of the experiments. When talking about “model performance” we mainly
refer to best test accuracy of a model trained for 100 epochs. Our hardware setup
consists of a single machine with 4 GeForce RTX 2070 SUPER graphic cards,
so we train on 4 workers.

5.1 Experimental Setup

To be able to empirically evaluate the effects of importance-aware dataset parti-
tioning on the performance of DPT systems, we use two well-known DNN archi-
tectures for image classification: ResNet-18 and ResNet-34 [4] and train them on
CIFAR-10 and CIFAR-100 datasets [7]. We use official PyTorch implementations
of the models? and initialize them with random weights. In total, our experi-
ments consist of 1830 training runs across 183 workloads (different combinations
of datasets, models, partitioning heuristics, importance metrics, Eyqrmup, and
Einterval)- Three of these 183 workloads use vanilla DPT (ResNet-18 on CIFAR-
10, ResNet-34 on CIFAR-10, and ResNet-34 on CIFAR-100), and we use them
as baselines for comparison. For all runs that use importance-aware DPT, we
set Eignore to 5. We use the same hyperparameters for all runs of vanilla DPT
and importance-aware DPT, i.e., SGD with a 0.9 Nesterov momentum and a
learning rate starting at 0.1 and weight decay (L2 penalty) of 0.0005.

Considerations for Randomness: The training process of DNNs is a stochas-
tic one and is affected by many factors, e.g., choice of hyperparameters, stochas-
ticity in the optimization algorithms, and the stochastic behavior of the tools,
frameworks, and hardware used for training [15]. To better control for this
stochasticity, each of the 183 workloads is repeated ten times using ten pre-
determined global random seeds. In Tables 1, 2, 3, 4 and 5, we report the average
best test accuracy and standard deviation of ten runs for each workload. Also,
the box plot of the performance of the top five settings of each table, alongside
the performance of the corresponding baseline (vanilla DPT), is shown in Fig. 5.

5.2 Different Dataset Complexities

We consider workloads of (ResNet-34, Stripes, Variance) with each of the
CIFAR-10 and CIFAR-100 datasets. The results of the runs can be seen in
Tables4 and 5, and in Fig. 5 subfigures (4)—(5). CIFAR-10 and CIFAR-100 con-
tain the same number of examples in train (50000 examples) and test (10000
examples) subsets, but they differ in the number of classes. CIFAR-10 has ten
classes (5000 training examples per class), and CIFAR-100 has 100 classes (500
training examples per class). Hence, CIFAR-100 has a higher complexity than
CIFAR-10 in terms of classes.

2 See https://pytorch.org/vision/main/models.html.
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Fig. 5. Box plots comparing the performance of the top 5 settings of Ewarmup (W) and
Eintervar (INT) for different combinations of (Dataset, Model, Partitioning Heuristic,
Importance Metric). The leftmost box plot in each subfigure is the performance of
vanilla DPT (baseline), and the other five box plots are ordered in decreasing average
best test accuracy. The white square on each box plot denotes the average best test
accuracy for a setting. Each subfigure (1)—(5) corresponds to a table with the same
number, which contains the average best test accuracies and standard deviations over
ten runs for each of the combinations of W and INT.
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Table 1. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Eyarmup (W) and Eintervar (I), when training ResNet-18
on CIFAR-10 with Stripes policy and loss variance as the importance metric. The

baseline (using vanilla DPT) is 82.983 £ 0.327.

w

I

1

5

8

10

15

30

10

82.766 £0.185

82.848 £0.278

82.742£0.152

82.862 £ 0.237

82.836 £0.387

82.988 £0.299

15

82.743 £0.373

82.752 £0.157

82.891 £ 0.302

82.888 £0.296

82.958 £0.247

82.873 £0.262

20

82.776 £0.243

82.832£0.262

82.749 £ 0.309

82.722+£0.221

82.878 £0.283

83.044 £0.311

30

82.846 £0.202

82.858 £0.376

82.837£0.263

82.946 £ 0.204

82.843 £0.307

82.773 £0.266

40

82.946 £0.246

82.773 £0.208

82.985 £0.238

82.869 £ 0.364

82.815£0.296

82.827£0.161

60

82.813£0.283

82.898 £0.300

82.882+0.152

82.764 £0.293

82.830£0.249

82.705£0.415

Table 2. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Fintervar (I), when training ResNet-18 on
CIFAR-10 with Stripes policy and average loss as the importance metric. The baseline

(using vanilla DPT) is 82.983 £ 0.327.

w

I

1

5

8

10

15

30

10

82.941 £0.262

82.880 £0.339

82.859 £0.312

82.815+£0.290

82.836 £0.226

82.891£0.195

15

82.885£0.231

82.816 £0.287

82.841£0.316

82.778 £0.259

82.866 £+ 0.260

82.773 £0.247

20

82.952+0.314

82.913 £0.247

82.903 £ 0.240

82.889 £ 0.265

82.841 £0.278

82.919+£0.210

30

82.939£0.294

82.854£0.185

82.853 £0.236

82.889 £ 0.227

82.743 £0.335

82.929 £0.279

40

82.864 £0.138

82.903 £0.152

82.883 £0.225

82.766 £ 0.220

82.905 £0.244

82.851£0.236

60

82.908 £0.337

82.931£0.339

82.818 £0.245

82.956 £ 0.228

82.806 £0.195

82.758 £0.237

The results show that there are several combinations of (Eyarmups Einterval)
for training settings that can train better models than vanilla DPT. Thus, the
gains of importance-aware DPT seem to hold across different datasets, given
that we can find and select good hyperparameters for the training setting (e.g.,
Ewarmup and Einter'ual)~

5.3 Different Models

We consider workloads of (CIFAR-10, Stripes, Variance) with each of the
ResNet-18 (18 layers, 8 residual blocks) and ResNet-34 (34 layers, 16 residual
blocks) models [4]. The results of the runs can be seen in Tables1 and 4, and
in Fig. 5 subfigures (1) and (4). There are combinations of (Eyarmup, Einterval)
corresponding to each model that train better models than their corresponding

baselines, but ResNet-34 shows to gain more from importance-aware DPT than
ResNet-18.
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Table 3. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Eintervar (I), when training ResNet-18 on
CIFAR-10 with Blocks policy and loss variance as the importance metric. The baseline

(using vanilla DPT) is 82.983 £ 0.327.

w

I

1

5

8

10

15

30

10

82.921 £0.352

83.067 £0.270

82.778 £0.426

82.743£0.218

82.662 £0.240

82.706 £0.165

15

82.992 £0.321

82.899 £0.308

82.890 £0.253

82.805+0.165

82.664 £0.178

82.109 £0.338

20

82.845 £0.292

82.939£0.376

82.850 £ 0.429

82.716 £0.205

82.747£0.289

82.523 £0.165

30

82.956 £ 0.189

82.942 £ 0.309

83.055£0.153

82.954 £ 0.382

82.815£0.247

82.583 £0.206

40

83.001 £0.270

82.861 £0.336

82.786 £0.247

82.925+£0.18

82.865 £0.177

82.894 £0.254

60

82.918 £0.348

82.873 £0.283

82.848 £0.271

82.886 £0.273

82.884 £0.228

82.462 £0.222

Table 4. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and Fintervar (I), when training ResNet-34
on CIFAR-10 with Stripes policy and loss variance as the importance metric. The

baseline (using vanilla DPT) is 82.661 £ 0.478.

w

I

1

5

8

10

15

30

10

82.650 £0.547

82.653 £0.399

82.590 £ 0.395

82.621 +£0.243

82.751£0.461

82.753 £0.632

15

82.537 £0.332

82.424£0.510

82.745+£0.401

82.799 £ 0.481

82.832£0.239

82.433 £1.020

20

82.845 £0.441

82.659 £0.637

82.787 £ 0.407

82.606 £ 0.541

82.890 £0.321

82.492 £ 0.300

30

82.671£0.434

82.539£0.307

82.719 £ 0.509

82.920 £ 0.287

82.594 £0.434

82.720 £ 0.589

40

82.669 £ 0.426

82.773 £0.403

82.422+£0.728

82.530 £ 0.305

82.649 £0.339

82.562 £0.353

60

82.789£0.336

82.615 £0.342

82.683 £0.397

82.768 £0.525

82.678 £0.451

82.622 £0.661

5.4 Different Partitioning Heuristics

We consider workloads of (CIFAR-10, ResNet-18, Variance) with each of the
Stripes and Blocks heuristics. The results of the runs can be seen in Tables 1
and 3, and in Fig. 5 subfigures (1) and (3).

The results show that for both heuristics, there are combinations of
(Ewarmups Pintervar) that can train better models than vanilla DPT. It is par-
ticularly interesting that training using the Blocks heuristic shows comparable
performance to training with both Stripes heuristic and vanilla DPT.

5.5 Different Importance Metrics

With the loss values generated by each example in forward passes across several
epochs as our importance measure, we evaluate the effects of the choice of two dif-
ferent metrics: average loss and loss variance. We consider workloads of (CIFAR-
10, ResNet-18, Stripes) with each of the above metrics. The results of the runs
can be seen in Tables 1 and 2, and in Fig. 5 subfigures (1)—(2). Loss variance as an
importance metric performs marginally better than the average loss.
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Table 5. Average best test accuracies (over ten runs) and standard deviations for
different combinations of Ewarmup (W) and FEintervar (I), when training ResNet-34
on CIFAR-100 with Stripes policy and loss variance as the importance metric. The

baseline (using vanilla DPT) is 49.042 £ 0.698.

w

I

1

5

8

10

15

30

10

49.169 £0.335

49.064 £0.312

49.167 £0.432

48.758 £0.597

49.04£0.503

49.033 £0.450

15

49.156 £0.332

48.959 £0.437

49.264 £0.292

49.186 £0.498

49.073£0.573

49.079£0.351

20

48.978 £0.550

49.144 £0.637

49.024 +£0.365

49.149£0.297

48.944 £0.436

48.977£0.380

30

49.278 £0.399

48.906 £0.792

49.102 £ 0.393

48.897 £0.432

49.152 £0.446

48.966 £ 0.389

40

49.129 £0.549

48.978 £0.527

49.262 +0.489

49.155£0.387

48.998 £0.450

49.024 £0.284

60

49.083 £0.348

49.224 £0.338

49.027 £0.453

49.194 £ 0.396

49.107 £0.461

49.270 £0.429

Table 6. Overhead statistics (in seconds) of importance-aware DPT when training
ResNet-18 on CIFAR-10 with the different 36 combinations of Eyarmup and Einterval-

Quantity Min | Average | Max
Importance tracking overhead (each epoch) | 0.979 | 1.052 1.407
Heuristic overhead (each interval) 2.456 | 2.643 5.213
Total training time 715 | 721.556 | 758

5.6 Added Overheads

The overheads of importance-aware DPT compared to vanilla DPT include (1)
tracking importance data for each example at every epoch (a.k.a., importance
tracking overhead) and (2) calculating the importance of examples and reparti-
tioning the dataset based on heuristics at the beginning of each interval (a.k.a.,
heuristic overhead). In Table 6, we report the statistics on these overheads (in
seconds) when we train ResNet-18 on CIFAR-10 for 100 epochs using four work-
ers and the different 36 combinations of Eyarmup and Eiptervar (as reported in
Tables1, 2, 3, 4 and 5). The importance tracking overhead is independent of
Ewarmup and Finterval, as it happens at every epoch, and on average accounts
for 14.57% of the total wallclock time. However, we should note that this is a
prototype implementation of importance-aware DPT, and many optimizations
can be made to significantly reduce the overheads (e.g., getting the individual
example losses and the mini-batch losses in the same forward pass or using
MPIT operations for calculating the importance of examples). By only requiring
repartitioning at every Fjpterval, importance-aware DPT has the potential to
significantly reduce the network and I/O overhead that vanilla DPT requires for
fetching examples at each epoch, especially in large training settings consisting
of hundreds of thousands or millions of examples.
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6 Conclusion

In this paper, we proposed importance-aware DPT, a data-parallel training app-
roach for deep neural networks, that partitions the dataset examples across the
workers based on a notion of the importance of each example. Our empirical
evaluation across a number of well-known image classification workloads sug-
gests that by setting relevant values for the hyperparameters of this approach,
most notably Eyarmup and Eiptervai, we can find better models (in terms of
best test accuracy) compared to when training with vanilla DPT. Future work
can concentrate on, e.g., using hyperparameter tuning methods for finding the
best values for the hyperparameters of importance-aware DPT and evaluating
the effects of different importance metrics and measures.
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